ATLAS Exotics

D. Strom University of Oregon on behalf of The ATLAS Collaboration

Outline

Brief overview of 2015 data sample

13 TeV

- Search for quantum gravity and other resonance and structure at high mass 13 TeV
 - Physics motivation:
 - Quantum Black Holes
 - W' and Z' bosons
 - Strong gravity
 - Final states
 - e-μ, γ + jets, Dijets, multi-jets
- Search W' and Z' 13 TeV
- Search for dark matter 13 TeV
 - Mono-Z, W signatures
- 8 TeV (newly submitted for publication)
- Flavor violation $\tau \rightarrow \mu^- \mu^+ \mu^-$
- Vector like quarks (from composite theories)

Other related ATLAS talks:

David Lopez:	Dibosons
Christian Ohm:	BSM Higgs
Arely Cortes Gonzalez:	Dark Matter
Lene Bryngemark:	Dijets

2015 Data

- Cautious ramp up in luminosity $\sqrt{s} = 13$ TeV
- 3.2 fb⁻¹ recorded and good for physics
 - (c.f. 21 fb⁻¹ at √s = 8 TeV)
- ATLAS detector and trigger worked well throughout the run
 - New layer of pixels
 - Improved E^{miss} hardware trigger
- Cross sections based on luminosity calibrated in a "van der Meer" scan

What to expect from 13 TeV data

- PDF are rapidly falling with high x
- Increased center-ofmass energy increases cross sections for heavy particles
- For particles above 1-2 TeV, 13 TeV data is more sensitive, even though luminosity was ~7 times lower.
- With limited luminosity, most interesting searches will depend on processes involving u and d quarks and gluons

Search for quantum gravity

- Gravitational waves are now known to be both produced and detected (see talk by Frédérique Marion)
 - No hint of deviations from GR
 - LIGO limit from dispersion: m_g < 1.2 × 10⁻²² eV (PRL 116, 061102 (2016))

- Quantum effects expected near the reduced Planck Scale ~2.4 10¹⁸ GeV not accessible in experiments
- In theories with extra dimensions, the Planck Scale can be lower, for example near the GUTS scale
 - CMB observations (see talk by Paolo Natoli) could give us a hint about the scale of quantum gravity from the imprint of gravitational waves on the CMB of the early universe, but dust is major challenge.
 - Improved experiments coming (<u>http://arxiv.org/abs/1502.00612</u>, <u>http://arxiv.org/abs/1601.00125</u>)
- If the extra dimensions are large enough or warped, the scale of quantum gravity can come down to the TeV scale:
 - Quantum Black Holes (low multiplicity final states, like contact interaction, QBH can have color and EM charge)
 - ADD -- Arkani-Hamed, Dimopoulos, Dvali, arXiv:hep-ph/9803315, arXiv:hep-ph/9807344 ``large" extra dimensions
 - RS -- Randall and Sundrum arXiv:hep-ph/9905221
 - Use QBH generator from Gingrich, for most results (arXiv:0911.5370)
 - For ADD models use M_D (gravity scale) = M_{TH} (QBH threshold) and n=6
 - For RS1 use n=1
 - Micro-black holes from strong graviational couplings (multi-jets, leptons, democratic coupling)
 - Expect Kluza-Klein excitations of graviton in ADD, etc.

Other searches

Contact interactions (e.g. for leptons Phys. Rev. Lett. 50 (1983) 811)

$$\mathcal{L} = \frac{g^2}{\Lambda^2} \left[\eta_{LL} \left(\overline{q}_L \gamma_\mu q_L \right) \left(\overline{\ell}_L \gamma^\mu \ell_L \right) + \eta_{RR} \left(\overline{q}_R \gamma_\mu q_R \right) \left(\overline{\ell}_R \gamma^\mu \ell_R \right) \right. \\ \left. + \eta_{LR} \left(\overline{q}_L \gamma_\mu q_L \right) \left(\overline{\ell}_R \gamma^\mu \ell_R \right) + \eta_{RL} \left(\overline{q}_R \gamma_\mu q_R \right) \left(\overline{\ell}_L \gamma^\mu \ell_L \right) \right], \qquad g^2 = 4\pi$$

- Excited quarks (e.g. from substructure, KK excitations of quark-gluon resonances, etc.)
 - (Baur, Spira and Zerwas Phys. Rev. D42 (1990) 815)
 - (Bhattacharya, et al Phys. Rev. D80 (2009) 015014)
- W' and Z' bosons type depends on final state
 - Sequential Standard Model (SSM)
 - Z' (Langacker Rev.Mod.Phys 81 (2009))1199)
 - W' (Altarelli, Mele, and Ruiz-Altaba Z. Phys. C 45 (1989) 109)
 - Leptophobic (Z' from jets) arXiv:1507.00966 [hep-ex] (2015)
 - Z' inspired from GUTS, E6 inspired:
 - London and Rosner, Phys. Rev. D34 (1986) 1530.
 - Langacker, Rev.Mod.Phys 81 (2009))1199.
 La Thuile

Bench mark models: Reality is probably more interesting

11 March 2016

Electron-muon final states

- Resonance in electron-muon final state would be an indictment of the SM
- Background from true leptons is modeled using fits to MC distributions. A data driven measurement of jet→e is used for background from jets
- One event seen in tail, but is not significant
 - Top background dominates
 - Muon resolution spreads signal (and background)
- Limits are shown for Z' and QBH models
- ADD limit 4.6 TeV
 - Branching ratio is small because QBH must be colorless, charge zero (http://arxiv.org/pdf/0806.4605v2.pdf)
 - Run 1 Jet+Lepton limit
 5.3TeV (PRL 112, 091804)

La Thuile

Background for µe

Process	$m_{e\mu} < 300 \text{ GeV}$	$300 < m_{e\mu} < 600 \text{ GeV}$
Тор	900 ± 80	404 ± 50
Diboson	116 ± 13	52 ± 7
QCD and W+jets	67 ± 10	17 ± 4
$Z/\gamma^* o au au$	9.3 ± 1.3	1.79 ± 0.21
Total background	1092 ± 90	476 ± 50
Data	1164	475

Process	$600 < m_{e\mu} < 1200 \text{ GeV}$	$1200 < m_{e\mu} < 2000 \text{ GeV}$
Тор	36 ± 4	0.55 ± 0.31
Diboson	2.6 ± 0.4	$(7 \pm 5) \cdot 10^{-3}$
QCD and W+jets	1.0 ± 0.9	0.12 ± 0.35
$Z/\gamma^* o au au$	0.13 ± 0.01	$(3.5 \pm 1.4) \cdot 10^{-3}$
Total background	40 ± 4	0.67 ± 0.34
Data	36	0

Process	$2000 < m_{e\mu} < 3000 \text{GeV}$	$m_{e\mu} > 3000 \text{ GeV}$
Тор	$(1.7 \pm 3.4) \cdot 10^{-2}$	$(0.3 \pm 2.6) \cdot 10^{-3}$
Diboson	$(4 \pm 6) \cdot 10^{-5}$	$(0.3 \pm 1.5) \cdot 10^{-7}$
QCD and W+jets	0	0
$Z/\gamma^* o au au$	$(1.9 \pm 2.6) \cdot 10^{-4}$	$(2 \pm 10) \cdot 10^{-5}$
Total background	$(1.7 \pm 3.4) \cdot 10^{-2}$	$(0.3 \pm 2.7) \cdot 10^{-3}$
Data	1	0

8

Photon+jet

See YSF talk by Lene Bryngemark

 Use standard fitting function for background:

$$f_{\rm bkg}(x \equiv m_{\gamma \rm j}/\sqrt{s}) = p_0(1-x)^{p_1} x^{-p_2-p_3\log x}$$

- Likelihood fit to $m_{\ensuremath{\gamma} j}$ used to extract possible signal
- Models are QBH^{*} and excited quarks, q^{*}
 - ADD (n=6) M_{TH} > 6.2 TeV 95% CL
 - RS (N=1) M_{TH} > 3.8 TeV 95% CL
 - q* M_{q*} > 4.4 TeV 95%CL
- arxiv:1512.05910, accepted by JHEP
- Significant improvement over Run 1, eg ADD limit was 4.6 TeV.

*QBH for photon+jet: Phys.Lett. B668 (2008) 20-23

Di-jet m_{jj}

- Dijets very good for QBH, some sensitivity for q^{*} and Z', W'
- Search for deviations in m_{ii} for |y*| < 0.6
- Background model (z = m_{jj}/\sqrt{s}) $f(z) = p_1(1-z)^{p_2} z^{p_3}$
- Background systematic formed by adding terms to model
- Main systematic jet energy scale
- **QBH M_{TH}** limits at 95% CL:

Di-jet x

- Contact interaction limits (95% CL):

Run 1 Obs Exp [TeV] [TeV] [TeV] 8.1 12.0 12.0 $\eta_{LL} = 1$ 12.0 17.5 18.1 $\eta_{LL} = -1$ See YSF talk by La Thuile

Multi-jet, micro-BH search

- Extrapolation in H_T extended after each step in luminosity
- Background functions shown on figures
- 95% CL Limits on

M_{th} [TeV]

14 ₪

13⊢

11

10

9

12

ATLAS

√s = 13 TeV

2.5

La Thuile

L dt = 3.0 fb⁻¹

- M_D gravity scale
- M_{TH} threshold mass

3.5

Highest mass event:

11 March 2016

La Thuile

Highest m_T electron event

La Thuile

High m_T Muon event

La Thuile

Lepton pairs -- Z' search and CI

- Leptonic decays: $Z' \rightarrow e e$ $Z' \rightarrow \mu \mu$
- Careful selection of muons for good resoluton
- MC non-electron background fit to smooth functions.
- Electron background from jets extracted using a matrix method

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}. 3.2 \text{ fb}^{-1}$

Z' → ||

1 1.5 2 2.5

La Thuile

3

• Z` limits 2.79 – 3.4 TeV

17

σ B [pb]

10

10

 10^{-3}

 10^{-4}

0.5

Summary Z' and Contact Interaction limits

Contact interaction limits are modestly improved over Run 1 data at $\sqrt{s=8TeV}$

Limits on KK graviton for $\sqrt{s}=13$ TeV are on the way.

Big improvements are likely with the 2016 data on Contact Interactions and KK gravitons

2	40	-	I	I	I	I	I	I	
			ATLAS	Prelin	ninary	-	-		
<	35	<u>-</u>	√s = 13	TeV, 3	3.2 fb ⁻¹	-	Expe	cted	_
		F	Prior: 1	$/\Lambda^2$			Expe	$cted \pm 1 c$	л — —
							Expe	cted ± 2 c	л –
	30	<u> </u>				-	√s =	8 TeV, 20	fb ⁻¹
		L							_
	25	_							_
	20								_
									_
	20								_
		_							
	4 5	-							-
	15	-							_
		-	I	1	1	I	I	I	, 1
		LL Const	LL Dest	LR Const	LR Dest	RL Const	RL Dest	RR Const	RR Dest
								Chiral S	Structure

Channel	Prior	Left-Left [TeV]		Left-Right [TeV]		Right-Left [TeV]		Right-Right [TeV]	
Channer		Const.	Destr.	Const.	Destr.	Const.	Destr.	Const.	Destr.
Exp: ee Obs: ee	$1/\Lambda^2$	18.5 18.3	15.2 15.3	18.1 17.6	$15.8 \\ 15.8$	$17.7 \\ 17.5$	$16.1 \\ 15.9$	17.9 17.5	$15.9 \\ 15.8$
Exp: <i>ee</i> Obs: <i>ee</i>	$1/\Lambda^4$	$16.9 \\ 16.7$	14.3 14.1	$16.6 \\ 16.2$	$\begin{array}{c} 14.8\\ 14.5\end{array}$	$\begin{array}{c} 16.4 \\ 16.1 \end{array}$	$\begin{array}{c} 14.8\\ 14.6\end{array}$	$ \begin{array}{r} 16.5 \\ 16 \end{array} $	$\begin{array}{c} 14.7 \\ 14.6 \end{array}$
Exp: $\mu\mu$ Obs: $\mu\mu$	$1/\Lambda^2$	18.2 20.2	14.5 15.8	$17.5 \\ 19.7$	$15.1 \\ 17.0$	$17.4 \\ 19.4$	$15.4 \\ 17.1$	18.1 20.4	$14.5 \\ 15.8$
Exp: $\mu\mu$ Obs: $\mu\mu$	$1/\Lambda^4$	$16.6 \\ 18.1$	13.8 15.0	$16.3 \\ 17.7$	$14.4 \\ 15.8$	$\begin{array}{c} 16.1 \\ 17.4 \end{array}$	$14.5 \\ 15.9$	$16.6 \\ 18.1$	$13.9 \\ 15.0$
Exp: $\ell\ell$ Obs: $\ell\ell$	$1/\Lambda^2$	21.4 23.1	$16.4 \\ 17.5$	21.0 22.1	17.4 18.8	$20.4 \\ 21.7$	$\begin{array}{c} 17.7 \\ 19.0 \end{array}$	20.9 22.6	$16.9 \\ 17.7$
Exp: $\ell\ell$ Obs: $\ell\ell$	$1/\Lambda^4$	$ \begin{array}{r} 19.9 \\ 20.7 \end{array} $	$15.6 \\ 16.4$	19.0 20.0	$16.6 \\ 17.5$	18.7 19.8	$16.6 \\ 17.6$	19.4 20.3	$\begin{array}{c} 16.0\\ 16.6\end{array}$

TT March 2016

18

Di-electron event

19

Summary of 7 and 8 TeV results

AT Sta	LAS Exotics Sear	ches* -	- 95%	CL I	Exclus	ion (L dt = (ATLAS 4.7 - 20.3) fb ⁻¹	S Preliminary $\sqrt{s} = 7, 8$ TeV
	Model	<i>ℓ</i> , ү	Jets	\mathbf{E}_{T}^{miss}	∫L dt[fb	¹] Limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH $high D_{tr/k}$ ADD BH high $N_{tr/k}$ ADD BH high p_T ADD BH high p_T ADD BH high multijet RS1 $G_{KK} \rightarrow \ell\ell$ Bulk RS $G_{KK} \rightarrow ZZ \rightarrow qq\ell\ell$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ Bulk RS $G_{KK} \rightarrow t\bar{t}$ 2UED / RPP	- 2e, μ 1 e, μ - 2 μ (SS) ≥ 1 e, μ - 2 e, μ 2 γ 2 e, μ 1 e, μ 2 e, μ (SS)	$ \ge 1j - 1j 2j - 2j 2j/1J 2j/1J 4b \ge 1b, \ge 1J ≥ 1b, ≥ 1 $	Yes - - - - - Yes - Yes j Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Mp 5.25 TeV Ms 4.7 TeV Mih 5.82 TeV GKK mass 2.66 TeV GKK mass 760 GeV W'mass 760 GeV KK mass 900 GeV KK mass 960 GeV		1502.01518 1407.2410 1311.2006 1407.1376 1308.4075 1405.4254 1503.09898 1405.4123 1504.05511 1409.6190 1503.04677 1506.00285 1505.07018 1504.04605
Gauge bosons	$\begin{array}{l} \text{SSM} \ Z' \to \ell \ell \\ \text{SSM} \ Z' \to \pi \\ \text{SSM} \ W' \to \ell \\ \forall \forall \forall X \to \ell \\ \forall \forall WZ \to qq\ell \\ \text{EGM} \ W' \to WZ \to qq\ell \\ \text{EGM} \ W' \to WZ \to qqq \\ \text{HVT} \ W' \to WH \to \ell \\ \forall W \\ \text{HVT} \ W \to \ell \\ \text{LRSM} \ W_R \to t \\ \text{L} \end{array}$	2 e, μ 2 τ 1 e, μ 3 e, μ 2 e, μ - 1 e, μ 1 e, μ 0 e, μ	- - 2 j / 1 J 2 J 2 b 2 b, 0-1 j ≥ 1 b, 1 J	– Yes Yes – Yes Yes –	20.3 19.5 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Z' mass 2.9 TeV ~3TeV Z' mass 2.02 TeV W' mass 3.24 TeV 4.18 TeV W' mass 1.52 TeV W' mass 1.50 TeV W' mass 1.3-1.5 TeV W' mass 1.47 TeV W' mass 1.92 TeV	$g_V = 1$	1405,4123 1502,07177 1407,7494 1406,6456 1409,6190 1506,00962 1503,08089 1410,4103 1408,0886
C	Cl qqqq Cl qqll Cl uutt	_ 2 e, μ 2 e, μ (SS)	2 j _ ≥ 1 b, ≥ 1	– – j Yes	17.3 20.3 20.3	Λ 12.0 T Λ Λ 4.3 TeV	$ \begin{array}{l} \mbox{feV} & \eta_{LL} = -1 & 17.5 \mbox{ TeV} \\ \hline \mbox{21.6 TeV} & \eta_{LL} = -1 \mbox{ 23 TeV} \\ C_{LL} = 1 & \end{array} $	1504.00357 1407.2410 1504.04605
MQ	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e, μ 0 e, μ	≥1j 1J, ≤1j	Yes Yes	20.3 20.3	M 974 GeV M 2.4 TeV	at 90% CL for $m(\chi) < 100 \text{ GeV}$ at 90% CL for $m(\chi) < 100 \text{ GeV}$	1502.01518 1309.4017
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3	– – j Yes	20.3 20.3 20.3	LQ mass 1.05 TeV LQ mass 1.0 TeV LQ mass 640 GeV	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \beta = 0 \end{array}$	Preliminary Preliminary Preliminary
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ T_{5/3} \rightarrow Wt \end{array} $	1 e,µ 1 e,µ 1 e,µ 2/≥3 e,µ 1 e,µ	$\geq 2 \text{ b, } \geq 3$ $\geq 1 \text{ b, } \geq 3$ $\geq 2 \text{ b, } \geq 3$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b, } \geq 5$	j Yes j Yes j Yes j Yes	20.3 20.3 20.3 20.3 20.3	T mass 855 GeV Y mass 770 GeV B mass 735 GeV B mass 755 GeV T ₅₁₃ mass 840 GeV	T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1503.05425
Excited fermions	Excited quark $q \rightarrow q\gamma$ Excited quark $q \rightarrow qg$ Excited quark $b \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $v^* \rightarrow \ell W, vZ$	1 γ – 1 or 2 e, μ 2 e, μ, 1 γ 3 e, μ, τ	1 j 2 j 1 b, 2 j or 1 – –	– j Yes –	20.3 20.3 4.7 13.0 20.3	q' mass 3.5 TeV 4.4 TeV q' mass 4.09 TeV 5.2 TeV b' mass 870 GeV 7 c' mass 2.2 TeV 7 v' mass 1.6 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2$ TeV $\Lambda = 1.6$ TeV	1309.3230 1407.1376 1301.1583 1308.1364 1411.2921
Other	LSTC $a\tau \rightarrow W\gamma$ LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles $\sqrt{s} = 7 \text{ TeV}$	1 e, μ, 1 γ 2 e, μ 2 e, μ (SS) 3 e, μ, τ 1 e, μ - - - S = 8 TeV	- 2 j - 1 b - √s = 13	Yes - Yes - TeV	20.3 20.3 20.3 20.3 20.3 20.3 7.0	ar mass 960 GeV N ⁰ mass 2.0 TeV H ^{±±} mass 551 GeV H ^{±±} mass 657 GeV monopole mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1 1		1407.8150 1506.06020 1412.0237 1411.2921 1410.5404 1504.04188 Preliminary

Many more exotics results coming soon at 13 TeV See also results on dibosons from D. Lopez and γγ from C. Ohm 11 March 2016

13 TeV updates

this talk

La Thuile

$\tau \to \mu^- \mu^+ \mu^-$

• Probes LFV, e.g.

8 TeV based result using

 $W \to \tau \; v$

- Acceptance mainly a trigger issue, due to overlap removal, will be improved in future
- ATLAS result Br($\tau^- \rightarrow \mu^- \mu^+ \mu^-$) < 3.76 × 10⁻⁷
- PDG (mainly Belle) Br($\tau^- \rightarrow \mu^- \mu^+ \mu^-$) < 2.1 × 10⁻⁸

http://arxiv.org/pdf/1601.03567.pdf

Only one event survives after the tight selection and it is outside of signal region

21

Vector like quarks at 8 TeV

- Vector-like quarks can arise in composite **Higgs models**
- G^*

 Boosted jet techniques used

http://arxiv.org/abs/1602.06034

 Two √s =8 TeV results have been recently submitted for publishication

Exotics Outlook

Many processes only interesting with more data at 13TeV (or 14 TeV):

Expect ~30 fb⁻¹ by end of this year (2016)
Expect ~300 fb⁻¹ by end of Run 3 (2023)
Expect ~3000 fb⁻¹ by end of HL-LHC (~2035)

ATLAS and CMS have an active program of upgrades to make sure that physics performance can be maintained at high luminosity and pileup

23

11 March 2016

- 300fb

30fb

3000fb

Backup

La Thuile

Follows DM form recommendation: http://arxiv.org/abs/1507.00966

750 GeV Photon Pair

