New physics in final states with jets or vector bosons LaThuile 2016, 6-12 March 2016

Anne-Laure Cunrath Pequegnot¹ On Behalf of the CMS collaboration

¹Institut de Physique Nucléaire de Lyon - Université Claude Bernard Lyon 1

March 11th, 2016

Introduction				
Introduc	tion			

- The discovery of a Higgs–like particle by the ATLAS and CMS collaborations in July 2012: a triumph for the SM
- However, SM is not the end of the story: low energy effective theory?
- Indeed, there are phenomena for which SM offers no explanation:
 - Baryon asymmetry
 - Neutrino mass
 - Dark Matter candidate (DM)
 - Naturalness ("non fine-tuning")
 - Hierarchy problem, caused by the quadratic divergences in the quantum-loop corrections to the Higgs boson mass
- Many searches are performed to highlight theories beyond the SM which try to adress some of these problems
- This talk: overview of CMS searches for new physics in final states with jets or bosons

Introduction			
Outline			

- 1. Introduction
- 2. Dijet search
 - Using dijet mass distribution
 - Using dijet angular distribution
- 3. Black holes
 - Black holes search
- 4. Massive resonances search
 - Massive resonances decaying into pairs of boosted W and Z
 - $X \rightarrow HH \rightarrow b\bar{b}\tau^+\tau^-$
 - Search for W' boson
 - Search for $t\bar{t}$ resonances
- 5. Search for vector-like quarks
 - Search for $T\overline{T}$ and $B\overline{B}$ (legacy results from Run 1)
 - Search for $Q\bar{Q}$
 - Search for $X_{5/3}\bar{X}_{5/3}$
- 6. Conclusion
- 7. Links

	Dijet search			
Outline				

1. Introduction

2. Dijet search

- Using dijet mass distribution
- Using dijet angular distribution

3. Black holes

Black holes search

4. Massive resonances search

- Massive resonances decaying into pairs of boosted W and Z
- $X \to HH \to b\bar{b}\tau^+\tau^-$
- Search for W' boson
- Search for $t\bar{t}$ resonances
- 5. Search for vector-like quarks
 - Search for $T\overline{T}$ and $B\overline{B}$ (legacy results from Run 1)
 - Search for $Q\bar{Q}$
 - Search for $X_{5/3}\overline{X}_{5/3}$
- 6. Conclusion
- 7. Links

Introduction Dijet search Black holes Massive resonances search Vector-like quarks 000 Search for narrow resonances in dijet mass distribution Model-independent search for massive resonances in dijet mass spectrum More sensitive than previous studies for dijet masses above 2 TeV

 SM dijet spectrum well predicted by QCD: steeply and smoothly falling functional form fitted on data

Search for NP signatures in dijet angular distribution

- Probe parton-parton scattering angle in dijet events: $\chi_{\text{dijet}} = \exp(|y_1 y_2|), y \equiv \frac{1}{2} \ln\left(\frac{E+p_2}{E-v_2}\right)$
- Search for signatures of new physics:
 - Quark compositeness models: new interactions between quarks constituents at scale $\Lambda \gg m_q$, approximated by contact interaction (CI) at energies below Λ
 - Virtual graviton exchange for the Arkani-Hamed-Dimopoulus-Dvali (ADD) model of extra spatial dimensions
- ≥ 2 jets, $\chi_{\text{dijet}} < 16$, $|y_{\text{boost}}| < 1.11$ $(y_{\text{boost}} = \frac{1}{2}(y_1 + y_2))$, M_{jj} bins
- χ_{dijet} flat for leading QCD processes in particular in qq, qg and gg channels

 No significant deviation from prediction observed

- Set limits on scale Λ of CI and ADD models using modified frequentist approach (*CL_S*)
- Likelihood defined as product of Poissonian likelihood functions for each bin in χ_{dijet} for the 2 highest M_{jj} ranges

13
TeV

Model	Observed (expected 13 TeV	d) lower limit (TeV) 8 TeV
$\overline{\Lambda^+_{LL/RR}}$ (LO)	$12.1~(12.0\pm1.1)$	$10.3~(9.8\pm 1.0)$
$\Lambda_{II/RR}^{-}$ (LO)	$16.3~(15.3\pm2.4)$	$12.9(12.4\pm2.2)$
ADD Λ_T (GRW)	$9.1 (9.0 \pm 0.7)$	$7.1(6.8 \pm 0.5)$
ADD M_S (HLZ) $n_{ED} = 2$	$9.7 (9.6 \pm 0.7)$	$6.9(6.6 \pm 0.4)$
ADD M_S (HLZ) $n_{ED} = 3$	$10.8(10.7 \pm 0.8)$	$8.4(8.0 \pm 0.6)$
ADD M_S (HLZ) $n_{ED} = 4$	$9.2(9.0 \pm 0.7)$	$7.1(6.8 \pm 0.5)$
ADD M_S (HLZ) $n_{ED} = 5$	$8.3(8.1 \pm 0.6)$	$6.4(6.1 \pm 0.5)$
ADD M_S (HLZ) $n_{ED} = 6$	7.7 (7.6 \pm 0.6)	$5.9~(5.7\pm 0.4)$

	Black holes		
Outline			

- 1. Introduction
- 2. Dijet search
 - Using dijet mass distribution
 - Using dijet angular distribution
- 3. Black holes
 - Black holes search
- 4. Massive resonances search
 - Massive resonances decaying into pairs of boosted W and Z
 - $X \to HH \to b\bar{b}\tau^+\tau^-$
 - Search for W' boson
 - Search for $t\bar{t}$ resonances
- 5. Search for vector-like quarks
 - Search for $T\overline{T}$ and $B\overline{B}$ (legacy results from Run 1)
 - Search for $Q\bar{Q}$
 - Search for $X_{5/3}\overline{X}_{5/3}$
- 6. Conclusion
- 7. Links

Inclusive black holes (BH) search for all possible final states at 13 TeV

- n-flat extra-dimensions introduced by ADD model: true Planck scale $M_D O(\text{TeV})$
- 2 BH models with $M_{BH} > M_D$ considered (threshold BH production: $M_{BH}^{min} \ge M_D$):
 - ▶ Semi-classical BH (SCBH): $M_{BH} \gg M_D$, high multiplicity decay products (~ 75 % quarks/gluon)
 - ▶ Quantum BH (QBH): M_{BH} → M_D, low multiplicity FS (typical decay: dijet)

Strategy: counting experiment on the S_T variable in various inclusive object multiplicity bins ($N \ge N_{min}$, N=jets, electrons, muons, photons with E_T >50 GeV)

$$S_T = \left(\sum_{i=1}^N E_{T,i}\right) + \left(E_T^{miss} > 50 \,\text{GeV}\right)$$

- Signal manifests as broad excess in tails of *S*_T spectrum
- Use *CL_S* method to extract limits on *M*^{min}_{BH}

2.2 fb⁻¹ (13 TeV)

- SC non-rotating BH with $M_{BH}^{min} = 8.7$ TeV excluded
- QBH with *M*^{min}_{BH} =8.0 TeV excluded
- Extend significantly Run 1 searches sensitivity (limits in 4.3–6.2 TeV)

		Massive resonances search		
Outline				

- 1. Introduction
- 2. Dijet search
 - Using dijet mass distribution
 - Using dijet angular distribution
- 3. Black holes
 - Black holes search
- 4. Massive resonances search
 - Massive resonances decaying into pairs of boosted W and Z
 - $X \rightarrow HH \rightarrow b\bar{b}\tau^+\tau^-$
 - Search for W' boson
 - Search for $t\bar{t}$ resonances
- 5. Search for vector-like quarks
 - Search for $T\overline{T}$ and $B\overline{B}$ (legacy results from Run 1)
 - Search for $Q\bar{Q}$
 - Search for $X_{5/3}\overline{X}_{5/3}$
- 6. Conclusion
- 7. Links

Massive spin-1 and spin-2 resonances decaying to VV (V=W,Z

- Select events with boosted back-to-back V (= W, Z)
- All-hadronic VV channel
- Semileptonic VW channel
- Select V-jets: boosted V_{hadr} reconstructed as a single jet
 - ▶ Jet mass: V-jet originating from $W/Z \rightarrow 65 < M(pruned jet) < 105 \text{ GeV}$
 - Jet substructure: hadronic V decays result to 2 overlapping jets
- Select semileptonic events: exactly 1 iso $e(\mu)$, $E_T^{miss} > 80(40)$ GeV
- After reconstructing V candidates, reconstruct diboson candidate: comparison between m_{VV} distribution observed in data and SM predictions shows no evidence of signal
- Set 95 % CL upper limits using the modified frequentist prescription (asymptotic CL_S method) combining $l\nu$ +jet and dijet channel

Models:

- Spin-2 RS bulk graviton (G_{bulk})
- Spin-1 composite heavy vector triplet (HVT) model (W')

Model	Upper limits
$ \begin{array}{c} \sigma_{95\%} \times \mathcal{B}(W' \to WZ) \\ \sigma_{95\%} \times \mathcal{B}(G_{bulk} \to WW) \\ \sigma_{95\%} \times \mathcal{B}(G_{bulk} \to ZZ) \end{array} $	[755, 5.7] fb [472, 4.0] fb [227, 6.8] fb

New physics in final states with jets or vector bosons

- Dedicated reconstruction techniques for boosted $b\bar{b}$ and $\tau^+\tau^-$ pairs
- Reconstructing hadronic H ($b\bar{b}$ decay products merged in a single jet):
 - Jet mass: originating from H \rightarrow 100 < M(pruned jet) < 140 GeV
 - Jet substructure: hadronic H decays result to 2 overlapping (b) jets ►
- Reconstructing $\tau \tau$ system: usual τ_{hadr} reco; likelihood fit algo using \vec{p}_T^{miss}
- Looking at M_{HH} distributions: no significant deviation from SM expectations
- 95% CL upper limits using CL_S criterion, using profile likelihood ratio for test statistic, performing shape analysis by counting events
- KK excitations of spin-0 particle (radion) with UV mass scale parameter $\Lambda_R = 1$ TeV decaying to HH: masses between 950 and 1150 GeV excluded at 95 % CL

Anne-Laure Cunrath Pequegnot

New physics in final states with jets or vector bosons

Introduction Dijet search Bla 00 0

Search for $W' \to tb$

- Couplings hypothesis:
 - Purely right-handed W'_R : $a^L_{q_iq_j} = 0$, $a^R_{q_iq_j} = 1$
- Leptonic t decay: W' more boosted than at 8 TeV so no isolation requirement on lepton
 - ▶ 1 non-isolated e (μ), ≥2 jets, ≥1 b-tag jet, E_T^{miss} > 120 (50) GeV

0000

- Using M(tb) distributions to set limits on $\sigma_{W'_R}$ using Bayesian approach
- Observed (expected) limit of 2.38 (2.17) TeV $(M_{\nu_R} \ll M_{W'_R})$ already exceed their 8 TeV counterparts despite smaller integrated luminosity

- Legacy 8 TeV results: see backup
 - Combining hadronic and leptonic W decay modes
 - W[']_R with mass below 2.15 GeV excluded at 95% CL

New physics in final states with jets or vector bosons

[Х] 10 В		· · · ·				±2σ Exp	ected	
6 ^N 1		a.i.i.a.i	-					
ы 10 ⁻¹	Ē			-				
. <u>⊟</u> ໄg10⁻²								
ă ∩_10⁻³	E							
	0.5	1	1.5	2	2.5	3	3.5	4
							M _{7'}	leV

		Vector-like quarks	
Outline			

- 1. Introduction
- 2. Dijet search
 - Using dijet mass distribution
 - Using dijet angular distribution
- 3. Black holes
 - Black holes search
- 4. Massive resonances search
 - Massive resonances decaying into pairs of boosted W and Z
 - $X \to HH \to b\bar{b}\tau^+\tau^-$
 - Search for W' boson
 - Search for $t\bar{t}$ resonances
- 5. Search for vector-like quarks
 - Search for $T\overline{T}$ and $B\overline{B}$ (legacy results from Run 1)
 - Search for $Q\bar{Q}$
 - Search for $X_{5/3}\bar{X}_{5/3}$
- 6. Conclusion
- 7. Links

				vector-like quarks	
				•00	
Search fo	or vector-l	like charge	e 2/3 T and -1/3 I	B quarks: leg	acy results
from Ru	n 1	U		1 0	5

- VL charge 2/3 T quarks produced strongly in pairs, decaying to tH, tZ, bW (see backup)
 - Depending on the BR, expected (observed) 95% CL limits in [790, 890] GeV ([720, 920] GeV)
- VL charge -1/3 B quarks produced strongly in pairs, decaying to tW, bZ or bH (see backup)
 - Depending on the BR, expected (observed) 95% CL limits in [710, 890] GeV ([740, 900] GeV)

95% CL M(T) exclusion limit (GeV)			95% CL M(B) exc	lusion limit (GeV)
Exclusive decay mode	Expected	Observed	Exclusive decay mode	Expected	Observed
$T \rightarrow tH$	840	770	$B \rightarrow tW$	890	880
$T \rightarrow tZ$	830	790	$B \rightarrow bH$	810	900
$T \rightarrow bW$	890	920	$B \rightarrow bZ$	740	750

"Triangle plot" with expected and observed upper limits for different BR scenarios

New physics in final states with jets or vector bosons

Introduction Dijet search Black holes Massive resonances search Vector-like quarks

Search for $Q\bar{Q}$ with $Q \rightarrow qW$ in lepton+jets final states

- Search for strong production of $T\bar{T}$ or $Q\bar{Q}$ pair
- $T\bar{T} \rightarrow bW^+\bar{b}W^- \rightarrow bl\nu\bar{b}q\bar{q}'$: used in $T\bar{T}$ searches combination
- $Q\bar{Q} \rightarrow qW^+\bar{q}W^- \rightarrow ql\nu\bar{q}q\bar{q}'$
- Both resolved and boosted topologies considered
- Selection: exactly one charged lepton, \geq 4 jets (either \geq 4 narrow jets or \geq 3 narrow jets and \geq 1 wide jet for cases wide jet overlaps with a narrow jet), E_T^{miss}
- T/Q mass reconstruction using a kinematic fit
- Cut on $S_T = p_T^l + E_T^{miss} + p_T^{j1} + p_T^{j2} + p_T^{j3} + p_T^{j4}$ after KF: strongly suppress $t\bar{t}$ dominant bkg

- No sign of possible signal: proceed to set 95% CL upper limits on the signal cross sections using Bayesian interpretation
- VL Q with mass below 788 (804) GeV excluded at 95% CL

			Conclusion	
Outline				

- 1. Introduction
- 2. Dijet search
 - Using dijet mass distribution
 - Using dijet angular distribution
- 3. Black holes
 - Black holes search
- 4. Massive resonances search
 - Massive resonances decaying into pairs of boosted W and Z
 - $X \to HH \to b\bar{b}\tau^+\tau^-$
 - Search for W' boson
 - Search for $t\bar{t}$ resonances
- 5. Search for vector-like quarks
 - Search for $T\overline{T}$ and $B\overline{B}$ (legacy results from Run 1)
 - Search for $Q\bar{Q}$
 - Search for $X_{5/3}\overline{X}_{5/3}$
- 6. Conclusion
- 7. Links

			Conclusion	
C 1				

Conclusion

- Even if no sign of new physics beyond the SM have been found (yet), the Run1 analyses have allowed to establish limits on several BSM processes
- First 13 TeV results already allow to push the limits further, despite the integrated luminosity being an order of magnitude smaller
- Future Run2 data analyses will give new answers, as they will continue to scrutinize higher energy processes and reach better sensitivity

Thanks for your attention!

			Links
Outline			

- 1. Introduction
- 2. Dijet search
 - Using dijet mass distribution
 - Using dijet angular distribution
- 3. Black holes
 - Black holes search
- 4. Massive resonances search
 - Massive resonances decaying into pairs of boosted W and Z
 - $X \to HH \to b\bar{b}\tau^+\tau^-$
 - Search for W' boson
 - Search for $t\bar{t}$ resonances
- 5. Search for vector-like quarks
 - Search for $T\overline{T}$ and $B\overline{B}$ (legacy results from Run 1)
 - Search for $Q\bar{Q}$
 - Search for $X_{5/3}\overline{X}_{5/3}$
- 6. Conclusion
- 7. Links

			Links
Links			

- Dijet search:
 - Search for narrow resonances decaying to dijets in proton-proton collisions at $\sqrt{s} = 13$ TeV: <u>CMS-EXO-15-001</u>
 - Searches for quark contact interactions and extra spatial dimensions with dijet angular distributions in proton proton collisions at 13 TeV: <u>CMS-PAS-EXO-15-009</u>
- Black holes:
 - Search for black holes at $\sqrt{s} = 13$ TeV: <u>CMS-PAS-EXO-15-007</u>
- Massive resonances search:
 - Search for massive resonances decaying into pairs of boosted W and Z bosons at $\sqrt{s} = 13$ TeV: <u>CMS-PAS-EXO-15-002</u>
 - Search for resonant pair production of Higgs bosons decaying to $b\bar{b}$ and $\tau^+\tau^-$ in proton-proton collisions at $\sqrt{s} = 8$ TeV: <u>CMS-PAS-EXO-15-008</u>
 - ► W':
 - Search for $W' \rightarrow tb$ in proton-proton collisions at $\sqrt{s} = 8$ TeV: <u>B2G-12-009</u>
 - Search for W' boson resonances decaying into a top quark and a bottom quark in the leptonic final state at \sqrt{s} = 13 TeV: <u>CMS-PAS-B2G-15-004</u>
 - - Search for $t\bar{t}$ resonances in boosted semileptonic final states in pp collisions at $\sqrt{s} = 13$ TeV: CMS-PAS-B2G-15-002
 - Search for resonant $t\bar{t}$ production in proton-proton collisions at $\sqrt{s} = 8$ TeV resonances: <u>B2G-13-008</u>
- Vector-like quarks:
 - Search for vector-like charge 2/3 T quarks in proton-proton collisions at $\sqrt{s} = 8$ TeV : <u>B2G-13-005</u>
 - Search for pair-produced vector-like B quarks in proton-proton collisions at $\sqrt{s} = 8$ TeV: <u>B2G-13-006</u>
 - Search for vector-like quarks in final states with a single lepton and jets in pp collisions at $\sqrt{s} = 8$ TeV: CMS-PAS-B2G-12-017
 - Search for top quark partners with charge 5/3 at \sqrt{s} = 13 TeV : <u>CMS-PAS-B2G-15-006</u>

Backup

Simultaneous search for T' and W' (CMS-PAS-B2G-12-017)

- Simultaneous search for both a new heavy top partner and a heavy charged gauge boson in dilepton final states
- Model-independent search based on a 2D mass reconstruction of the $T'\bar{T}'$ system
- 2 isolated leptons, 2 jets and E^{miss}_T

2D mass reconstruction:

- Known masses: system can be solved analytically
- Unknown masses: test every point of the M_T, M_W plane for possible solutions
- Mass plane scanned in steps of 5 GeV to produce the area in which a specific solution exists or not
- A single point in the solution area chosen by picking the one which is more likely to originate from a pp collision according to its PDF

- No evidence of any excess found
- Setting upper limit on the signal cross section per mass point using a modified frequentist approach (*CL_S* method)
- Region up to a $M_{T'}$ range of 800-920 GeV depending on $M_{W'}$ is excluded

Search for t^* and \hat{b} (B2G-12-008)

- Search for pair produced BSM resonances coupling to a t and another parton in dilepton final state
 - Spin-3/2 t^* with $t^* \to tg$
 - RPV MSSM constrained to have minimal flavor violation, allowing *b̃* to be the LSP with *b̃* → tq_d (q_d: down-type quark)

- $\label{eq:required: 2 isolated leptons, 2 loose btag, 2 medium btag and 2 failing loose btag jets$
- Strategy: reconstruct light quarks or gluons jets *p*_{*T*} and resonance mass
- Build a 3D PDF using 2D light jets distributions and invariant mass distributions
- Extended unbinned likelihood to take into account the constraint distributions
- 95 % CL upper limits computed using the unified approach advocated by Feldman and Cousins
 - t^{*} masses between 300 and 703 GeV excluded
 - *b* masses between 250 and 600 GeV excluded

Links

Displaced SUSY (B2G-12-024)

- BSM models predict particles with significant lifetime: non-prompt decay signature, production vertex displaced from the interaction region
- Search for pair of displaced leptons with large impact parameters *d*₀ and opposite charges
- No assumptions about the event topology: analysis sensitive to a wide variety of still viable BSM scenarios
- Interpretation in context of displaced SUSY with LSP \tilde{t} produced in pair, decaying through an RPV vertex: $\tilde{t} \rightarrow bl$
- Search only restricted to tracks with d₀ < 2 cm, for which the CMS triggering and reco algo have been previously optimized
- Selection: exactly 1 iso e and 1 iso μ oppositely charged, 3 signal regions (SR) depending on leptons d₀

- No significant excess over background estimation
- = 95 % CL upper limits on $\sigma(pp \to \tilde{t} \bar{t}^*)$ using Bayesian calculation
- For $c\tau = 2 \text{ cm}$, $M_{\tilde{t}}$ up to 790 GeV excluded

New physics in final states with jets or vector bosons

Links

Search for excited t^* (<u>B2G-12-014</u>)

- Large top mass: may indicate it is not an elementary particle, but has a composite structure
- Existence of an excited top (t*): direct test of this possibility
- Search for the pair production of t^* with spin 3/2 that decay 100 % in t+g
- Lepton+jets decay channel:

$$t^*\bar{t}^* \rightarrow (tg)(\bar{t}g) \rightarrow (W^+bg)(W^-\bar{b}g) \rightarrow (l^+\nu_l bg)(\bar{q}q'\bar{b}g)$$

- Strategy: reconstruct *m*_{tg}
 - Assign reconstruct objects to their progenitor particles (É_t = neutrino's p_t, require b jet assigned to one b quark)
 - Constrained kinematic fit
 - Choose jet permutation with the smallest χ²

- No excess found: set limit on inclusive t^{*}t^{*}
 σ using Bayesian statistics, combining e+jets and μ+jets channels
- Observed (expected) limit for m_{t^*} of 803 (739) GeV at 95 % C.L.

- Binned maximum likelihood fit to m_{tW}/S_T distributions to extract signal cross-section
- No excess found: set limits on $\sigma_{gb \rightarrow b^* \rightarrow tW}$ using Bayesian method
- Combining results taking into account systematics correlation between channels
- Expected (observed) mass exclusion at 95% CL for the LH, RH, and VL b: below 1480, 1560, and 1690 GeV (1390, 1430, and 1530 GeV) respectively

- Simplified scenario: only one new Dirac fermion related to DM within the energy reach of the LHC
- Search for the production of DM particles in association with a t pair, considering only scalar interaction at scale M_* : $\mathcal{L}_{int} = \frac{m_q}{M^3} \bar{q} q \bar{\chi} \chi$
 - Single-lepton analysis:
 - > 3 jets, > 1 b-jet, 1 isolated lepton, E_T^{miss} , min $\Delta \phi(j_{1,2}, \vec{E}_T^{miss})$
 - $M_T \equiv \sqrt{2E_T^{miss} p_T^l (1 \cos(\Delta \phi))} > 160 \text{ GeV required}$
 - Discriminate dileptonic $t\bar{t}$ background events with 1 undetected lepton from signal by requiring $M_{T2}^W > 200 \text{ GeV}$

$$M_{T2}^{W} = \min\left(m_{y} \text{ consistent with } \left\{\begin{array}{c} \overrightarrow{p}_{1}^{T} + \overrightarrow{p}_{2}^{T} = \overrightarrow{p}_{T}^{miss}, p_{1}^{2} = 0, (p_{1} + p_{l})^{2} = p_{2}^{2} = M_{W}^{2}, \\ (p_{1} + p_{l} + p_{b_{1}})^{2} = (p_{2} + p_{b_{2}})^{2} = m_{y}^{2} \end{array}\right\}\right)$$

- Di-lepton analysis: 2 leptons, ≥ 2 jets, $p_T^{l_1} + p_T^{l_2}$, $p_T^{j_1} + p_T^{j_2}$, $\Delta \phi_{ll}$
- 90% CL limits on σ for $M_* = 100 \text{ GeV: } \sigma > 20 \text{ to}$ 55 fb (0.09 to 0.31 pb) excluded in SL (DL)
- Lower limits on M_* set: for $m_{\chi} = 100$ GeV, $M_* <$ 118 (90) GeV excluded at 90% CL with SL (DL) analysis

ntroduction Dijet search Black holes Massive resonances search Vector-like quarks Conclusion 00 0 0000 000

Search for baryon number violation (B2G-12-023)

- BNV predicted in many BSM models: SUSY, grand unification, models with black holes
- Search for $t\bar{t}$ production, 1 BNV decay ($t \rightarrow \bar{b}\bar{c}l^+$, $t \rightarrow \bar{b}\bar{u}l^+$), 1 SM decay ($t \rightarrow bW \rightarrow bq\bar{q}'$)

Low E_T^{miss} simulation validation on Z+4 jets events-enriched data sample Selection:

- ▶ Basic: exactly 1 isolated lepton, ≥ 5 jets, ≥ 1 b-tagged jet
- Tight: $E_T^{miss} < 20 \text{ GeV}, \chi^2 = \chi^2_{m_{hadr}^{hadr}} + \chi^2_{m_t^{hadr}} + \chi^2_{m_t^{mbr}} < 20$
- Strategy: counting events N^T_{obs,exp} passing tight selection for each value of BNV decay branching fraction B
 - Basic sel. level: N^B_{exp(sig+bkg)} normalised to N^B_{abs} (reduces impact of some systematics and thus improves expected upper limit on B by 2.5)
 - ▶ Tight sel. level: significantly more efficient for signal ; N_{exp}^T depends on tight/basic selection efficiency which depends on \mathcal{B}
- Build likelihood function with observable N^T_{obs} and parameter of interest B and set 95% CL upper limit on B with the Feldman-Cousins approach

Channel	95% CL	Expected	68% CL exp. range
Muon	0.0016	0.0029	[0.0017, 0.0046]
Electron	0.0017	0.0030	[0.0017, 0.0047]
Combined	0.0015	0.0028	[0.0016, 0.0046]

	Assuming $B = 0$						
Process	Cross section (pb)	Basic	Corrected basic	Tight			
tt	246	38800 ± 7800	38700 ± 3600	2210 ± 220			
W+jets	37500	6300	± 3200	230 ± 120			
Z+jets	3500	380	± 190	32 ± 18			
tW	22.2	1160 ± 180	1160 ± 220	49 ± 9			
t-channel	87.1	250	± 130	5.7 ± 3.0			
s-channel	5.55	31 ± 16		0.84 ± 0.52			
WW	54.8	86 ± 43		3.1 ± 1.7			
WZ	33.2	41 ± 21		1.43 ± 0.78			
ZZ	17.7	5.5 ± 2.8		0.49 ± 0.28			
tī W	0.23	128 ± 64		5.9 ± 3.0			
tīZ	0.17	79 ± 40		4.1 ± 2.1			
QCD	_	760 ± 530		112 ± 56			
Total exp.	—	48000 ± 8600	47950 ± 220	2650 ± 130			
Data	_	47951		2614			

Links

Dijet search (dijet mass)

				Links
Smooth	ness test			

- Reduce sensitivity to gluon radiation from final state partons:
 - Combining geometrically close jets into 2 wide jets, using the 2 leading jets as seed
- *t*-channel dijet bkg suppression: $|\Delta \eta_{jj}| < 1.3$
- These requirements enhance sensitivity to isotropic decays of dijet resonances in presence of QCD dijet bkg
- To test the smoothness of the measured dijet mass spectrum, we fit the data with the parameterization:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{jj}} = \frac{P_0(1-x)^{P_1}}{x^{P_2+P_3\ln(x)}}$$

- $x = m_{jj}/\sqrt{s}$ and P_0 , P_1 , P_2 and P_3 fitted parameters
- $\chi^2/ndf = 31/35$

Signal shapes

- Gaussian cores: from the jet energy resolution
- Tails towards lower mass values:
 - QCD radiation: resonances containing gluons which emit QCD radiation more strongly than quarks, have a more
 pronounced tail
 - High-mass resonances: significant contribution that depends both on the PDF and on the natural width of the Breit–Wigner resonance.
 - For resonances produced through interactions of nonvalent partons in the proton, the low-mass component of the Breit–Wigner resonance distribution is amplified by the rise of the parton probability distribution at low fractional momentum \rightarrow large tail at low mass values
- Dijet mass resolution: from 7% at 1.5 TeV to 4% at 7 TeV (neglecting the tails)

Links

				Links
Setting l	imits			

- Amount of signal in each bin determined by the signal resonance shape
- Background comes from the background component of a S+B fit to the data (performed separately for each resonance mass hypothesis)
- Using a Bayesian formalism with flat prior for the positive signal cross section and zero otherwise
- Systematic uncertainties introduced as nuisance parameters
- Signal posterior marginalized over nuisance parameters to get 95% CL upper limits on the signal cross section for each resonance mass hypothesis
- For significance estimate with statistical uncertainties only using a likelihood ratio significance estimator
- A separate limit is determined for each final state (qq, qg, and gg) because of the dependence of the dijet resonance shape on the type of the two final-state partons

			Li

Limits: numbers for considered *s*-channel dijet resonances models

- String resonances: the observed mass limit of 7.0 TeV extends the previous CMS limit of 5.0 TeV
- Scalar diquarks: the observed mass limit of 6.0 TeV extends the previous CMS limit of 4.7 TeV
- Axigluons and colorons: the observed mass limit of 5.1 TeV extends the previous CMS limit of 3.6 TeV
- Excited quarks: set a mass limit of 5.0 TeV compared to the ATLAS limit of 4.06 TeV
- A color-octet scalar: the observed mass limit of 3.1 TeV improves the ATLAS limit of 2.70 TeV
- W' boson: exclude masses up to 2.6 TeV, just beyond the ATLAS limit of 2.45 TeV

Model	Final	Obs. Mass	Exp. Mass
	State	Limit [TeV]	Limit [TeV]
String	qg	7.0	6.9
Scalar diquark	qq	6.0	6.1
Axigluon/coloron	qq	5.1	5.1
Excited quark (q*)	qg	5.0	4.8
Color-octet scalar	gg	3.1	3.3
Heavy W (W')	$q\overline{q}$	2.6	2.3

Search for quark contact interactions and extra spatial dimensions with dijet angular distributions at 13 TeV

- Appearance of new interactions between quark constituents at a characteristic scale Λ that is much larger than the quark masses
- At energies well below Λ, these interactions are approximated by a contact interaction characterized by a four-fermion coupling
- In this letter, flavor-diagonal color-singlet couplings between quarks are studied, described by the effective Lagrangian

$$L_{qq} = \frac{2\pi}{\Lambda^2} \ \eta_{LL}(\overline{q}_L\gamma^\mu q_L)(\overline{q}_L\gamma_\mu q_L) + \eta_{RR}(\overline{q}_R\gamma^\mu q_R)(\overline{q}_R\gamma_\mu q_R) + 2\eta_{RL}(\overline{q}_R\gamma^\mu q_R)(\overline{q}_L\gamma_\mu q_L)$$

- L, R: chiral projections of the quark fields ; η_{LL} , η_{RR} , η_{RL} = 0, +1 or -1
- Various combinations of η_{LL} , η_{RR} , η_{RL} correspond to different CI models
- CI scenario under investigation here: $\Lambda = \Lambda_{LL}^{\pm}$ for $(\eta_{LL}, \eta_{RR}, \eta_{RL}) = (\pm 1, 0, 0)$

ADD extra dimension models

- Possible solution du the hierarchy problem of the SM
- Gravity is assumed to propagate in the entire higher-dimensional space, while SM particles are confined in a 3+1 dimensional subspace
- Fundamental Planck scale M_D is much smaller than the 3+1 dimensional Planck energy scale M_{Pl}
- A tail in the angular distribution could be produced from virtual graviton exchange
- 2 parametrizations for virtual graviton exhange in ADD model:
 - GRW (Giudice, Rattazzi, Wells) convention: the phenomenology after summing over the Kaluza-Klein states is controlled by a single parameter Λ_T
 - HLZ (Han, Lykken, Zhang) convention: describes the phenomenology in terms of the parameters M_S (string scale, O(M_D) and n_{ED} number of extra dimensions in a 4+n_{ED} dimensional space, which may be directly related to Λ_T

			Links
Selection			

- Preselection:
 - HT trigger, HT>650-800 GeV depending on the run
- $\blacksquare \geq 2~\text{AK4}~\text{PF}$ jets passing tight PF jet ID
- M_{ij} bins: [1.9, 2.4], [2.4, 3.0], [3.0, 3.6], [3.6, 4.2], [4.2, 4.8], [4.8, ∞] (higest observed value: 6.8 TeV)
- $\chi_{\text{dijet}} < 16$
- $|y_{boost}| < 1.1$

				Links
Systema	atics			

Prediction of perturbative QCD (pQCD) at NLO:

- Factorisation (μ_f) and renormalization (μ_r) scales set to the average p_T of the 2 jets
- The choice of theses scales dominates the uncertainties on pQCD prediction
- Evaluate uncertainty by varying the default choice of scales in 6 combinations: $(\mu_f / \langle p_T \rangle, \mu_r / \langle p_T \rangle) = (1/2, 1/2), (1/2, 1), (1, 1/2), (2, 2), (2, 1), (1, 2)$

Unfolding:

- Fluctuations in the jet response due to the finite jet p_T resolution of the detector can cause low- energy jets to be misidentified as the leading jets
- These fluctuations result in event migrations in \u03c6 dijet and in Mij
- \$\chi_{\lambda_{\left}}\$ distributions are corrected for these migrations and unfolded to particle-level using a Bayesian methodimplemented in the ROO-UNFOLD package

Uncertainty	1.9 < M _{jj} < 2.4 TeV	$M_{jj} > 4.8 \text{ TeV}$
Statistical	1.6%	24%
Jet energy scale	3.0%	9.5%
Jet energy resolution (core)	<1%	2.0%
Jet energy resolution (tails)	<1%	2.5%
Unfolding, MC modeling	<1%	<1%
Unfolding, detector simulation	1.0%	3.0%
Pileup	<1%	<1%
Total experimental	9.7%	26%
NLO scale (6 variations of μ_R and μ_F)	+7.9%	+13%
PDF (CT14 eigenvectors)	0.15%	0.4%
Non-perturbative corrections (Pythia8 vs. Herwig++)	<1%	<1%
Total theoretical	7.9%	13%

Search for black holes at 13 TeV

				Links
ADD mo	odel			

- ADD model with n large extra spatial dimensions that give rise to strong gravity due to the fact that in 4+n dimensions the fundamental Planck mass M_D can be as low as few TeV
- Gauge interaction localized in (3+1)-dimension brane
- Gravity propagates in n flat extra-dimensions compactified on torus or sphere with radius R (size of extra dimensions)
- Apparent Planck scale in our 4D time-space: $M_{Pl}^2 = M_D^{n+2} R^n$
- n=1 case requires the compactification radius R of order of the size of the solar system, and thus is ruled out by the very existence of our solar system

				Links
Semiclas	sical BH			

- Stricly valid if $M_{BH} \gg M_D$
- Semiclassical BHs decay via thermal Hwking radiation into a large number of energetic objects (hadrons ie jets, leptons, photons...)
- Relative abundance of various particle produced in BH evaporation process follows ndof per particle in SM
 - Decay products are ~ 75 % quarks/gluons du to their large number of color dof
- A lot of models can be explored:
 - Nonrotating, no gravitons (BlackMax)
 - Nonrotating (Charybdis)
 - Rotating, no gravitons (Blackmax + Charybdis)
 - Rotating black holes (Charybdis)
 - Rotating black holes, mass and angular momentum loss (Charybdis)
 - Rotating black holes, boiling remnant (Charybdis)
 - Rotating black holes, stable remnant (Charybdis)

				Links
Quantu	m black ho	oles		

- When M_{BH} approaches M_D , the semiclassical approximation is expected to break down and the BH becomes a quantum object
- Decay before thermalization
- Typically decays into a pair of quarks (dijet)
- Could also violate baryon and lepton number conservation: possible $e\mu$ final state

			Links
Selection			

Preselection:

- Good primary vertex
- Standard loose PF Jets ID, |η| < 5.2</p>
- ▶ S_T > 1000 GeV (HLT_PFHT800 trigger fully efficient), E_T > 50 GeV

Electron:

- Cut-based Electron ID with medium operating point
- I_{rel} < 0.1</p>
- $\blacktriangleright E_T > 50 \text{ GeV}$

Photon:

- Cut-based photon ID with medium operating point
- ρ-corrected PF photon isolation
- ► E_T > 50 GeV
- Muon:
 - Muon medium ID
 - $I_{rel} < 0.15$
 - E_T > 50 GeV

- Inclusive search for BH decays in all possible final states:
 - dominated by multijet ones for semiclassical BH
 - dominated by dijet ones for QBH
- Background of the analysis:
 - QCD multijet: dominant one by far
 - V+jets (V=W,Z)
 - <u>
 γ</u>+jets
 - tt+jets

- Non-QCD background contribution to the total bkg very small (see fig): neglected in the analysis
- Main challenge of the search: describe the inclusive multijet background in robust way
- Cannot rely on MC simulation: higher-order calculations that fully describe multijet production simply do not exist
- Background estimated exclusively from control sample in data
- A novel method of predicting the QCD background developed for the Run 1 analysis

Massive resonances search

Vector-like quark

Conclusion

Links

Background estimation

- Background directly derived from data
- Assumption: the shape of S_T distribution for dominant QCD multijet background doesn't depend on the multiplicity of the final state (above a certain turn-on threshold)
- Shape of bkg (bkg template) extracted from data at low multiplicity and then rescaled at higher multiplicities
- Bkg template obtained by fitting an ansatz function $\frac{P_0(1+x)^{P_1}}{x^{P_2+P_3\log(x)}}$ to N=2 S_T distribution with negligible signal contamination (NP contributions ruled out by Run 1 analysis for this region)
 - N=2: default
 - Add 5% systematics to account for difference between predictions based on N=2 and N=3 templates
- 2 additional functions $\frac{P_0}{(P_1+x)^{P_2}}$ and $\frac{P_0}{(P_1+P_2x+x^2)^{P_3}}$ making an uncertainty envelope
- Bkg template extracted by fitting N=2 S_T distribution normalized to obtain a bkg estimate for S_T spectra at higher multiplicities

 Normalization scale factors: 	SF	=	$\frac{N_{events}(N \ge N_{min})}{N_{events}(N=2)}$
--	----	---	---

Multiplicity	Normalization region [GeV]	Normalization scaling
≥ 2	2000 - 2300	8.47 ± 0.05
≥ 3	2000 - 2300	7.45 ± 0.04
≥ 4	2000 - 2300	5.52 ± 0.03
≥ 5	2300 - 2600	3.29 ± 0.03
≥ 6	2300 - 2600	1.71 ± 0.01
≥7	2300 - 2600	0.744 ± 0.006
≥ 8	2500 - 2800	0.328 ± 0.004
≥ 9	2500 - 2800	0.125 ± 0.001
≥ 10	2600 - 2900	0.046 ± 0.001

				Links
Systema	tics			

Uncertainty du to final-state radiation

- Migration from one multiplicity class to another du to FSR
- Estimate the effect by varying the parameters of the Pythia 8 generator used to hadronize and fragment the parton-level BH samples
- Effect of FSR on the signal acceptance in a typical inclusive bin used to set limit is 1.2 %

Uncertainty	Effect on signal acceptance	Effect on the background estimate
JES	±5%	-
JER	$\pm 4\%$	-
PDF	±6%	-
FSR	±1.2%	-
Background normalization	-	$\pm (0.5 - 5.2)\%$
Background shape	-	$\pm (1 - 200)\%$,
		depends on the S _T value.

• Compute optimum S_T^{min} and N_{min} wrt M_{BH}^{min} from point of view of maximization of \mathbb{Z}_{BI} test statistics based on the expected bkg

				Links
Event ca	andidates			

S _T , TeV	M, TeV	Ν	E _T ^{miss} , TeV	Jet p _T 's, TeV
			Run 260627,	Event 2097040310
6.67	6.69	4	0.11	2.63, 2.49, 1.17, 0.27
			Run 259685,	, Event 155512460
5.56	7.02	9	0.01	1.96, 1.65, 0.58, 0.41, 0.37, 0.17, 0.14,
				0.13, 0.12
			Run 257645,	Event 1610868539
5.35	6.42	12	0.11	1.80, 0.88, 0.54, 0.40, 0.37, 0.36,
				0.36, 0.26, , 0.09, 0.07, 0.07, 0.05

Diboson search

			Links
Channels			

- Search for massives resonances decaying to VV (V=W,Z)
- Boosted Vs: when they decay hadronically, their decay products are merged in a single jet
- Dijet channel: $X \to VV \to q\bar{q}'q\bar{q}'$
- $l\nu$ +jets channel: $X \to WV \to l\nu q\bar{q}'$, W decays leptonically, the other V boson decays hadronically
 - Special high-momentum isolated lepton reconstruction algo
 - $l = e \text{ or } \mu$
 - However, the results include the case where $W \rightarrow \tau \nu \rightarrow l \nu \nu$
 - Gain in sensitivity from the decay channels including au leptons is limited du to small BR
 - 8 TeV legacy results: spin 2 RS bulk graviton G* with g=1 and W' with mass below 700 and 1490 GeV respectively are excluded

				Links
Simulat	ed signal s	samples		

- Bulk graviton model
- Heavy vector triplet (HVT) model (W')
 - scenario (model B) where the W' predominantly couple to bosons (most representative of a composite Higgs model)
- In both models, vector gauge bosons with longitudinal polarisation V_L

			Links

Trigger and offline selection

- $l\nu$ +jets:
 - Trigger requires either 1 eletron or 1 muon, p_T > 45 GeV for muon, E_T > 105 GeV for electron, no isolation requirement, loose ID
- Dijet channel:
 - Trigger based on jets: H_T > 800 GeV or (H_T > 650-700 GeV and a single jet with p_T > 360 GeV and trimmed mass > 30-50 GeV)

- Use AK8 hets to reconstruct W-jet and Z-jet candidate
- Jet mass reconstruction:
 - Jet pruning algorithm
 - 65 < m_{jet} < 105 GeV</p>
- N-subjettiness reconstruction: τ_N variable
 - quantifies the capability of clustering the jet constituents in exactly N subjets, with small values representing
 configurations more compatible with the N-subjets hypothesis
 - $\tau_{21} = \tau_2 / \tau_1 < 0.75$

				Links
$l\nu$ +jets s	pecific pre	eselection		

- Exactly one isolated muon (electron) with $p_T > 53$ (120) GeV and $|\eta| < 2.1$ (2.5)
 - Stringent identification and isolation criteria optimised for high-p_T electron
- $E_T^{miss} > 40$ (80) for muon (electron) channel
 - Associated to neutrino
 - ▶ p_z^{ν} obtained by solving a second-order equation that sets $l\nu$ invariant mass = M_W

				Links
Final sel	ection			

After reconstructing the 2 vector bosons, apply final selection:

- l ν +jets channel:
 - AR(1, V-jet) > $\pi/2$ (back-to-back V bosons)
 - $\Delta \phi(W, E_T^{miss}) > 2$ radians $\Delta \phi(W, V) > 2$ radians

 - no b-tagged AK4 jets
- Hadronic channel:
 - $|\Delta \eta_{jj}| < 1.3$
 - ▶ m_{ii} > 1000 GeV

			Links
0.			

Categorisation

- According to τ₂₁:
 - Semileptonic channel:
 - High-purity (HP): $\tau_{21} \leq 0.6$
 - Low-purity (LP): $0.6 < \tau_{21} < 0.75$
 - Fully hadronic channel:
 - High-purity (HP): $\tau_{21} \leq 0.45$
 - Low-purity (LP): $0.45 < \tau_{21} < 0.75$
- According to pruned mass jet:
 - 65 GeV < M(pruned jet) < 85 GeV: V-jet deemed a W-candidate</p>
 - 85 GeV < M(pruned jet) < 105 GeV: V-jet deemed a Z-candidate</p>
 - 105 GeV < M(pruned jet) < 135 GeV: not considered in the analysis and not displayed in any plots to avoid experimenter's bias in future searches for WH, ZH, HH resonances with the same dataset
 - Semileptonic channel: 2 categories (WW and WZ)
 - Hadronic channel: 3 categories (WW, WZ, ZZ)
- According to lepton flavor (for semileptonic channel only): e or μ

In summary:

- 8 categories for semileptonic channel
- 6 categories for hadronic channel

Keep only one diboson candidate:

- In case several possible diboson candidate: diboson pairs in HP category are prefered to those in LP
- If still multiple choices of diboson candidates, keep candidate with highest p_T V-jet

- τ_{21} distributions: discrepancy between data and simulation
- Previous studies suggest it is du to mismodeling of the parton showering in simulation
- Analysis designed to be robust again these differences between data and MC (see next slides)

- Top quark enriched control sample ($t\bar{t}$ and signle top events):
 - ▶ Obtained by applying all *lν*+jets requirements but inverting b-tag veto (requiring ≥ 1 btag jet)
- Discrepancies between data and simulation are corrected using SF for:
 - top bkg normalization
 - V-tagging efficiency
 - peak and resolution of V-jet mass distribution
- Distribution in the top quarl enriched control sample:

Normalization correction factor for $t\bar{t}$ and single-t processes evaluated on signal jet mass window

Category	Definition	W scale factor
Dijet channel HP	$(\tau_{21} < 0.45)$	0.69 ± 0.14
Dijet channel LP	$(0.45 < \tau_{21} < 0.75)$	1.46 ± 0.38
ℓv+jet channel HP	$(\tau_{21} < 0.6)$	1.03 ± 0.13
$\ell \nu$ +jet channel LP	$(0.6 < \tau_{21} < 0.75)$	0.88 ± 0.49

- Extract W-jet mass peak position and resolution from the same fit
- Mass peak position shifted du to extra energy deposited in jet cone (PU, underlying event, ISR not completely removed from jet pruning...)
- Same corrections used in the case where V-jet is assumed to come from a Z (similar kinematic properties between Z and W))

$\tau_{21} < 0.45$	m [GeV]	σ [GeV]
Data	84.7 ± 0.4 GeV	8.2 ± 0.5 GeV
Simulation	$85.3\pm0.4~\text{GeV}$	$7.3\pm0.4~\text{GeV}$

				Links
Backgro	und			

- SM processes where a quark or gluon jets are falsely identified as V-jets
- Dominant background for $l\nu$ +jets channel: inclusive W boson production
- Dominant background for dilepton channel: QCD multijet
- Data-driven

QCD multijet background estimation (dijet channel): dijet fit method

Assume SM bkg described by a smooth parametrisable, monotonically decreasing distribution

$$\frac{dN}{dm_{jj}} = \frac{P_0 (1 - m_{jj} / \sqrt{s})^{P_1}}{(m_{jj} / \sqrt{s})^{P_2}}$$
(3-par. form),
$$\frac{dN}{dm_{jj}} = \frac{P_0}{(m_{jj} / \sqrt{s})^{P_2}}$$
(2-par. form),

- ML fit to the data
- Start from 2 parameters functional form
- Fischer F-test to check at 10% CL if additional parameters are needed

Anne-Laure Cunrath Pequegnot

New physics in final states with jets or vector bosons

Inclusive W bkg ($l\nu$ +jets channel): alpha ratio method

- Assume there is a correlation between *m*_{Vjet} and *m*_{VV} for W+jet bkg
- Other minor bkg (tt, single-t, diboson) taken from simulation
- Signal depleted region (sideband):
 - ▶ 40 GeV < m_{Vjet} < 65 GeV</p>
 - 135 GeV < m_{Vjet} < 150 GeV</p>
- Overall normalization of W+jets bkg in signal region determine from a fit to the m_{Vjet} in lower and upper sidebands of observed data

Inclusive W bkg ($l\nu$ +jets channel): alpha ratio method

Shape of m_{VV} of the V+jets bkg determined from lower m_{Vjet} sideband, extrapolated to signal region via a transfer function $\alpha_{MC}(m_{VV})$

$$\alpha_{\rm MC}(m_{\rm VV}) = \frac{F_{\rm MCSR}^{\rm V+jets}(m_{\rm VV})}{F_{\rm MCSR}^{\rm V+jets}(m_{\rm VV})},$$
(3)

where $F(m_{VV})$ is the probability density function used to describe the m_{VV} spectrum in the different regions, and has the functional form of a levelled exponential

$$F(m_{\rm VV}) = N_0 \cdot \exp\left(-\frac{m_{\rm VV} - m_0}{\sigma + k(m_{\rm VV} - m_0)}\right),\tag{4}$$

where N_0 is a normalisation parameter obtained as described above, $m_0 = 800$ GeV is a pivot parameter for the exponential, and σ and k control the shape of the function tail.

- Estimate observed V+jets bkg in sideband region, correcting for presence of minor bkg: $F_{DATA,SB}^{Vjets}(m_{VV})$
- Obtain V+jets bkg distribution in SR: $F_{DATA,SR}^{Vjets}(m_{VV}) = \alpha_{MC}(m_{VV}) \times F_{DATA,SR}^{Vjets}(m_{VV})$

Inclusive W bkg ($l\nu$ +jets channel): alpha ratio method

Inclusive W bkg ($l\nu$ +jets channel): alpha ratio method

Vector-like quarks

Conclusion

Links

Signal modeling

- Simulated *m_{jj}* distribution for resonances masses from 1 to 4 TeV
- Experimental resolution for dijet channel ranges from 10% at 1 TeV to 3% at 4 TeV (slightly better for semileptonic channel)
- Analytical description of the signal: double-sided Crystal-Ball function

				Links
Signal e	fficiencies			

Dijet channel

WZ

HP LP HP LP HP

1.7 2.5 1.9 2.3

ZZ

WW

LP

0.6

1.1 1.6 3.4 1.5 2.2

HP

0.4

1.9 2.8 4.5 4.7 1.1 0.8 3.9 0.4 6.1 0.3

Anne-Laure	Cunrath	Pequegnot
A AA LA LO, ALCO LA CA	CONTRACTOR	A CONCEASOR

Signal

 $G_{\text{bulk}} \to WW$

 $G_{bulk} \rightarrow WW$

 $G_{\text{bulk}} \rightarrow WW$

 $G_{\text{bulk}} \to WW$

 $G_{\text{bulk}} \rightarrow ZZ$

 $G_{\text{bulk}} \to ZZ$

 $G_{\text{bulk}} \to ZZ$

 $G_{bulk} \rightarrow ZZ$

 $HVT W' \rightarrow WZ$

 $HVT \: W' \to WZ$

 $HVT W' \rightarrow WZ$

 $HVT W' \rightarrow WZ = 4.0 \text{ TeV}$

Mass

1.2 TeV 3.1 5.7 2.3 4.0 0.4 0.5 13.2 0.5 3.8 0.1

2.0 TeV 4.1 9.3 1.3 2.9 0.1 0.3 15.4 0.9 2.9 0.1

3.0 TeV 3.1 8.0 1.5 3.4 0.1 0.3 14.7 1.2 3.2 0.2

4.0 TeV 2.7 8.2 1.8 4.0 0.2 0.5 14.1 1.2 3.9 0.2

1.2 TeV 0.3

2.0 TeV

3.0 TeV 0.3 1.2 1.4 3.6 1.2 2.3 -

4.0 TeV 0.3 1.3 1.2 3.7 1.1 2.2

1.2 TeV 1.7 3.0 4.6 6.9 0.9 1.3 2.8 0.1 6.3 0.1

2.0 TeV 1.9 4.8 3.8 6.8 0.5 0.8 3.9 0.3 6.4 0.2

3.0 TeV 1.4 4.6 3.2 6.9 0.6 0.8 3.9 0.4 6.4 0.2

 $\ell \nu$ +jet channel

LP

- - -

WZ

LP

HP

-

WW

-

				Links
Systema	tics: dijet	channel		

Anne-I	21110	Cuprath	Pequemot

Source	Relevant quantity	HP+HP uncertainty	HP+LP uncertainty
Jet energy scale	Resonance shape	2%	2%
Jet energy resolution	Resonance shape	10%	10%
Jet energy and <i>m</i> _{jet} scale	Signal yield	[0.4%-1.5%]	[0.1%-1.7%]
Jet energy and m_{jet} resolution	Signal yield	[0.1%-1.3%]	[0.1%-1.4%]
Pileup	Signal yield	2%	2%
Integrated luminosity	Signal yield	4.6%	4.6%
Jet energy and <i>m</i> _{jet} scale	Migration	[1%-46%]	[1%-55%]
W-tagging τ_{21}	Migration	44%	14%
W-tagging $p_{\rm T}$ -dependence	Migration	3.6%	6%

			Link

Systematics: semileptonic channel

General uncertainties

Source	Relevant quantity	$\mu\nu$ +jet uncertainty	ev+jet uncertainty	
Lepton trigger	Signal yield	1%	1%	
Lepton identification	Signal yield	1%	3%	
Jet energy scale	Signal yield	See T	ab. 6	
Jet energy scale	Resonance shape (mean)	1.3	3%	
Jet energy scale	Resonance shape (width)	[2%-	-3%]	
Jet energy resolution	Signal yield	See Tab. 6		
Jet energy resolution	Resonance shape (mean)	0.1	.%	
Jet energy resolution	Resonance shape (width)	4	%	
Integrated luminosity	Signal yield	4.6	5%	
PDF uncertainties (W')	Signal yield	[0.5%-	-8.5%]	
PDF uncertainties (G _{bulk})	Signal yield	[10%-	-45%]	
W-tagging τ_{21} (HP/LP)	Migration	13%,	49%	

Jet-specific uncertainties

Source	G _{bulk} signal n	ormalisation	W' signal normalisation		
bource	WW-enriched	WZ-enriched	WW-enriched	WZ-enriched	
Lot Enormy Coolo	-[4%-7%]	+[16%-33%]	-[11%-15%]	+[3%-9%]	
Jet Energy Scale	+[3%-5%]	-[15%-27%]	+[14%-17%]	-[4%-12%]	
Jet Energy Resolution	<0.1%		<0.1%		
Int Mass Scale	-[4%-10%]	+[16%-30%]	-[11%-16%]	+[1%-8%]	
Jet Mass Scale	+[3%-9%]	-[16%-25%]	+[12%-20%]	-[3%-10%]	
Int Mana Basalutian	-[2%-4%]	+[1%-12%]	-[1%-10%]	+[1%-5%]	
Jet Mass Resolution	+[2%-4%]	-[4%-11%]	+[2%-9%]	-[2%-4%]	

Anne-Laure Cunrath Pequegnot

New physics in final states with jets or vector bosons

Limits (semileptonic channel)

Anne-Laure Cunrath Pequegno

New physics in final states with jets or vector bosons

$X \to HH \to b\bar{b}\tau^+\tau^-$

Vector-like quarks

Conclusion

Links

Reconstructing "tauic" H

- Leptons (e, μ) reconstruction: tight ID, isolation (corrected from decay products of identified τ which are removed from isolation cone)
- \blacksquare Hadronic τ reconstruction: jets cleaned from identified leptons and fed to hadronic τ identification algo
- τ_{hadr} candidates contain only detectable particles (no ν)
- Likelihood fit algo for $\tau\tau$ system reconstruction: combined \vec{p}_T^{miss} ($|\vec{p}_T^{miss}|$ >50 GeV) and visible momenta

				Links
Full sele	ction			

Selection

 $\begin{array}{l} p_{\rm T,rvis} > 35\,{\rm GeV}, \, p_{\rm T,\ell} > 10\,{\rm GeV} \\ 0.1 < \Delta R_{\ell,rvis} < 1.0 \,, \, m_{\rm vis}(\ell, \tau_{\rm vis}) > 10\,{\rm GeV} \\ |\vec{p}_{\rm T}^{\rm miss}| > 50\,{\rm GeV} \\ p_{\rm T}(\tau\tau) \,\, {\rm from} \,\, {\rm SVFit} > 100\,{\rm GeV} \\ p_{\rm T,jet} > 400\,{\rm GeV} \,\, {\rm and} \,\, |\eta_{\rm jet}| < 1 \\ 100 < m_{\rm jet}^{p} < 140\,{\rm GeV}, \, \tau_{21} < 0.75 \\ {\rm Higgs-b} \,\, {\rm tagging} : 1 \,\, {\rm GSVL} \,\, {\rm tagged} \,\, {\rm fat} \,\, {\rm jet} \,\, {\rm if} \,\, \Delta R({\rm sj1},{\rm sj2}) < 0.3 \\ n < 2 \,\, {\rm SVL} \,\, {\rm tagged} \,\, {\rm jets} = 0 \end{array}$

19.7 fb⁻¹ (8 TeV)

Drell-Yan + iets

W + jets

Diboson

Observed

Single top

QCD multijets

Signal ×30 (M_=1.5 TeV, A_=1)

D1	and the constant	- 11 - L		

- Background estimation
 - $t\bar{t}$, W+jets, DY: main backgrounds ; other background components negligible
 - Perform predominantly data-driven prediction
 - Background shape: from simulation
 - Background yiel and composition: estimated on observed sideband events
 - Estimate data-to-simulation SF on background normalisation (second part of formula: check depedencies of SF on the b-tagging requirement, higer statistic by inverting isolation region):

$$\xi_{SR} = \xi_{IntermediateIso}^{Untagged} imes \xi_{InvertedIso}^{b-tagged} / \xi_{InvertedIso}^{Untagged}$$

Region	Pruned jet	Higgs-b-	Tau isolation		
	mass [GeV]	tagging	region		
Signal	100-140	b-tagged	loose		
IntermediateIso	20-240	untagged	intermediate		
	derive data-to	-simulation s	cale factors for backgrounds		
	assumption: d	ata-to-simula	ation agreement same as with loose isolation		
InvertedIso	20-240	untagged	inverted		
		b-tagged			
	extrapolate da	ta-to-simulat	ion agreement from untagged to b-tagged sample		
	assumption: b	-tag scale fac	tor same as with loose isolation		
Mass sideband	20-100,	untagged	loose		
	140-240				
	cross check ba	ckground est	imation procedure		
	assumption: p	runed jet ma	ss spectrum correctly described		
Untagged	100-140	untagged	loose		
	obtain simulated background shapes for signal region				
	assumption: b	ackground sl	hape not changed by b-tag requirement		

Channel	Background	ζ ^{Untagged} ζ _{IntermediateIso}	$\xi_{InvertedIso}^{b-tagged}$	$\xi_{InvertedIso}^{Untagged}$	ξ _{SR}
	tī	1.04 ± 0.17	0.65 ± 0.12	0.74 ± 0.06	0.91 ± 0.24
μc_h	other	0.68 ± 0.13	0.94 ± 0.17	0.93 ± 0.06	0.69 ± 0.19
075	tī	0.95 ± 0.18	0.86 ± 0.12	0.78 ± 0.07	1.05 ± 0.28
$e\tau_h$	other	1.02 ± 0.16	0.62 ± 0.18	0.98 ± 0.07	0.65 ± 0.22

Links

	Mass [TeV] (N _{obs})	$\tau_{\mu}\tau_{h}$	$\tau_{\rm e}\tau_{\rm h}$
N _{bkg}	[0.68,0.92] (1)	0.20 ± 0.09	0.22 ± 0.10
0	[0.85,1.15] (0)	0.25 ± 0.11	0.25 ± 0.10
	[1.25,1.75] (0)	0.05 ± 0.02	0.06 ± 0.02
	[1.70,2.30] (0)	0.005 ± 0.002	0.006 ± 0.002
	[2.10,2.90] (0)	0.001 ± 0.0003	0.002 ± 0.0005

				Links
Systema	tics			

Source	$\tau_{\mu}\tau_{h}$ channel	$\tau_{e}\tau_{h}$ channel
Luminosity	2.6%	2.6%
Pile-up	0.2–1.4%	0.7–1.2%
Mass window and τ_{21}	8.9%	8.9%
Higgs-b-tag	2.4-10%	2.4–10%
b-tag for veto	6.2-8.8%	6.0-8.5%
Jet energy scale	2.2-2.4%	1.1–2.2%
Jet energy resolution	< 0.5–1.1%	0.5–1.2%
Electron ID	-	1.3–1.8%
Electron energy resolution	-	0.2–0.7%
Electron energy scale	-	0.1–0.4%
Muon ID	0.8-0.9%	-
Muon momentum resolution	< 0.5%	-
Muon momentum scale	< 0.5-0.8%	-
Lepton modified iso	1.2-14.3%	3.5-20.8%
Tau ID	8.9-12.4%	8.5-11.9%
Tau Scale	< 0.5–1.1%	< 0.5–2.4%
Tau-jet cleaning	0.4–7.0%	0.5–15.7%
MET	Included in le	pton and jet uncertainties
Total	16-27%	21-34%

				Links
Signal o	fficiencies			

Signal efficiencies

- Signal efficiencies including acceptances and tau pairs branching ratios $\mathcal{B}(\tau \tau)$
- Statistical and systematic uncertainties are included
- The branching ratio of the τ pair in the final state is also shown

	Mass [TeV]	$\tau_{\mu}\tau_{h}$	$\tau_{\rm e} \tau_{\rm h}$
$\mathcal{B}(\tau\tau)$		22.6%	23.1%
$\epsilon_{sig}(\%)$	0.8	$0.19 \pm 0.03(\text{stat}) \pm 0.03(\text{syst})$	$0.14 \pm 0.03(\text{stat}) \pm 0.03(\text{syst})$
0	1.0	$1.70 \pm 0.09(\text{stat}) \pm 0.31(\text{syst})$	$1.10 \pm 0.07(\text{stat}) \pm 0.20(\text{syst})$
	1.5	$3.16 \pm 0.13(\text{stat}) \pm 0.63(\text{syst})$	$2.44 \pm 0.11(\text{stat}) \pm 0.48(\text{syst})$
	2.0	$5.07 \pm 0.17(\text{stat}) \pm 1.17(\text{syst})$	$3.95 \pm 0.15(\text{stat}) \pm 0.91(\text{syst})$
	2.5	$4.02 \pm 0.14(\text{stat}) \pm 1.09(\text{syst})$	$2.60 \pm 0.11(\text{stat}) \pm 0.88(\text{syst})$

			Links
Limits			

- Use the CL s criterion to extract upper bounds on the cross section, combining both event categories
- Test statistic: profile likelihood ratio
- Systematic uncertainties treated as nuisance parameters
 - described with log-normal prior probability distribution functions, except for those related to the extrapolation from sideband events, which are expected to follow a Γ distribution
- For each resonance mass hypothesis, only events in a region corresponding to ± 2.5 times the expected resolution around each mass point in the resonance mass distribution are considered in the likelihood, thus a shape analysis by counting events in these regions is performed

Search for $W' \rightarrow tb$, Summary

							Links
Search 3 co	n for $W' ightarrow t$	b esis:	$\mathcal{L} = rac{Vq}{2N}$	$\frac{i^{q_j}}{\sqrt{2}}g_W \overline{q}_i \gamma_\mu (a^R_{q_iq})$	$a_{q_i}(1-\gamma^5)+a_{q_iq_j}^L(1-\gamma^5)$	$(+\gamma^5))W'q_j+h.c.$	
	Purely right-handed Purely left-handed V Mixed-coupling W'_{Li}	$W'_{R}: a^{L}_{q_{i}q_{j}} = 0, a$ $W'_{L}: a^{L}_{q_{i}q_{j}} = 1, a^{R}_{q_{i}}$ $_{R}: a^{L}_{q_{i}q_{j}} = a^{R}_{q_{i}q_{j}} =$	$ \begin{cases} R \\ q_i q_j \\ q_j \\ = 1 \end{cases} $ interfer SM s-ch	ence with hannel single t p	roduction		
-	Had	ronic t decay			Leptonic t decay	7	
-	1 t-tag jet + 1 b-tag	jet in opposite	hemispheres	1 iso lepton	(e,μ) , ≥ 2 jets, ≥ 1	b-tag jet, E_T^{miss}	

- Set limits on $\sigma_{W'_R}$ using Bayesian approach, combining hadronic and leptonic W decay modes to enhance sensitivity of the analysis: W'_R with a mass below 2.15 GeV excluded at 95 % C.L.
- Constraints on LH and RH coupligs of W' to quarks
- Update of leptonic analysis at 13 TeV: observed (expected) limit of 2.38 (2.17) TeV already exceed their 8 TeV counterparts despite smaller integrated luminosity

Search for $W' \rightarrow tb$, 8 TeV, leptonic decay of top

					Links
Signal sa	amples				

Sets of signal samples:

- Purely right-handed W'_R : $a^L_{ud} = a^L_{cs} = a^L_{tb} = 0$, $a^R_{ud} = a^R_{cs} = a^R_{tb} = 1$
- Purely left-handed $W'_L: a^L_{ud} = a^L_{cs} = a^L_{tb} = 1, a^R_{ud} = a^R_{cs} = a^R_{tb} = 0$
- Mixed-couplig W'_{LR} : $a^L_{ud} = a^L_{cs} = a^L_{tb} = a^R_{ud} = a^R_{cs} = a^R_{tb} = 1$

Interference:

- W^L_L couples to the same fermion multiplets as SM W boson: interference between s-channel tb production via a W and via a W^L_L
- These 2 processes therefore cannot be generated separately: W'_L and W'_{LR} samples include SM s-channel tb production including its interference with W'_L
- Production of a tb final state via a W[']_R does not interfere with tb production via a W: W[']_R sample only includes W['] production

RH neutrino mass:

- $M(\nu_R) + M(l) < M(W')$: W'_R can decay leptonically
- Too large $M(\nu_R)$: W'_R can only decay to $q\bar{q}'$ FS $\Rightarrow BR(W'_R \rightarrow tb) \neq BR(W'_L \rightarrow tb)$

			Links
Selection			

- Exactly one isolated electron/muon
- At least 2 jets with $p_T > 120/40$ GeV
- At least one CSVM b-tagged jet
- $\blacksquare E_T^{miss} > 20 \text{ GeV}$

tb invariant mass reconstruction

Reconstructed from the combination of the charged lepton, the neutrino, the jet which gives the best top-quark mass reconstruction, and the highest- p_T jet in the event that is not associated with the top quark

- W candidate:
 - ▶ p_x^{ν} and p_y^{ν} obtained from E_T^{miss}
 - p_z^ν calculated by constraining the invariant mass of the lepton-neutrino pair to the W mass
 - Quadratic equation in p_z^{ν} :
 - 2 real solutions: both are used to reconstruct W candidates
 - Complex solutions: the real part is assigned to p_z^{ν} and imaginary part forced to 0 by relaxing W mass constraint and recomputing p_T^{ν} ; p_T^{ν} that gives the invariant mass of lepton-neutrino pair closest to 80.4 is chosen
- Top candidate:
 - Using W candidate and all selected jets
 - Chosing top candidate with mass closest to 172.5 GeV

				Links
tb invaria	int mass			

- Reconstructed invariant-mass distribution of the W'-boson candidates after the final selection
- All events are required to have one or both of the two leading jets tagged as b-jets
- The hatched bands represent the total normalisation uncertainty in the predicted backgrounds

ът 1	C 1 /	1 1	1 11 1	1 .	

Number of selected data, signal, and background events
 Final selection to improve the signal-to-background discrimination:

- Top quark candidate p^t_T > 85 GeV
- Vector sum of the 2 leading jets p_T^{jet1, jet2} > 140 GeV
- Top quark cnadidate mass 130 GeV < M(t) < 210 GeV</p>

		Number of selected events						
		Electror	n sample			Muon	sample	
	Prese	lection	Final s	election	Prese	lection	Final s	election
Process	1 b-tag	2 b-tags	1 b-tag	2 b-tags	1 b-tag	2 b-tags	1 b-tag	2 b-tags
Signal:								
$M(W'_{R}) = 1.8 \text{ TeV}$	45.2	12.7	32.2	9.3	38.0	10.8	26.3	7.7
$M(W_{R}^{\prime \prime}) = 2.0 \text{ TeV}$	20.9	5.6	14.6	4.0	17.5	4.7	11.8	3.2
$M(W_{R}^{\prime}) = 2.5 \text{ TeV}$	3.5	0.9	2.3	0.6	3.0	0.8	1.8	0.5
$M(W'_{R}) = 3.0 \text{ TeV}$	0.8	0.3	0.5	0.2	0.7	0.2	0.4	0.2
$M(W'_{\rm L}) = 1.8 {\rm TeV}$	143.0	60.9	57.1	19.7	148.8	63.7	58.1	19.5
$M(W_{I}^{\prime}) = 2.0 \text{ TeV}$	125.2	57.9	44.7	17.8	128.3	61.0	45.7	18.1
$M(W_{\rm L}^{\prime\prime}) = 2.5 \text{ TeV}$	115.8	58.6	38.4	17.2	122.3	62.6	41.6	17.7
$M(W'_L) = 3.0 \text{ TeV}$	121.3	58.1	41.0	16.7	126.6	64.4	42.2	17.9
Background:								
tī	34561	7888	12383	1639	35349	8191	12610	1650
s-channel (tb)	175	93	58	28	196	102	63	32
t-channel (tqb)	2113	357	710	108	2275	373	747	114
tW-channel	2557	362	847	107	2645	372	861	113
$W(\rightarrow \ell \nu)$ +jets	19970	563	3636	99	19697	679	3704	62
$Z/\gamma^*(\rightarrow \ell\ell)$ +jets	1484	83	260	10	1497	73	275	17
WW	205	9	47	3	219	7	47	2
Total bkg.	61065	9357	17942	1993	61877	9797	18307	1991
	± 6188	± 1504	± 2514	±399	± 6098	± 1524	± 2488	± 400
Data	63050	9646	18175	2063	62955	9865	18558	2081
Total bkg. / Data	0.969	0.970	0.987	0.966	0.983	0.993	0.986	0.957
	± 0.10	± 0.16	± 0.14	± 0.19	± 0.10	± 0.15	± 0.13	± 0.19

Anne-Laure Cunrath Pequegnot

New physics in final states with jets or vector bosons

				Links
Backgro	und mode	eling		

- The $t\bar{t}$, W+jets, single-top-quark (s-channel, t-channel, and tW associated production), Z/γ^* +jets, and diboson (WW) background contributions are estimated from simulation, with corrections to the shape and normalisation derived from data
- W+jets: major backgrounds for W' signal process (see table), study performed to check that the W+jets mass distribution is well-modelled by the simulation
 - Utilizes the fact that events that have no b-tagged jets, but satisfy all other selection criteria, are expected to originate
 predominantly from W+jets events
 - The purity of W+jets events for this control sample is greater than 85%
 - The shape of the W+jets background is obtained by subtracting the backgrounds from sources other than W+jets from the distributions in data
 - The resulting invariant-mass distribution is compared to the distribution from the W+jets MC sample with zero b-tagged jets
 - ▶ The difference between the distributions is included as a systematic uncertainty in the shape of the W+jets background
 - Using simulated events, the W+jets background was verified to be independent of the number of b-tagged jets by comparing the mass distribution with zero b-tagged jets with that obtained by requiring one or more b-tagged jets

			Links

Limits on coupling strength

- Effective Lagrangian: $\mathcal{L} = \frac{V_{q_i q_j}}{2\sqrt{2}} g_W \bar{q}_i \gamma_\mu (a_{q_i q_j}^R (1 \gamma^5) + a_{q_i q_j}^L (1 + \gamma^5)) W' q_j + h.c.$
- Can be analysed for arbitrary combinations of LH or RH couplings strenghts
- Cross section for single-top-quark production in presence of W' for any set of coupling can be written in terms of cross sections of signal MC samples:
 - σ_L for purely LH couplings $(a^L, a^R) = (1, 0)$
 - σ_R for purely RH couplings $(a^L, a^R) = (0, 1)$
 - σ_{LR} for mixed couplings $(a^L, a^R) = (1, 1)$
 - σ_{SM} for SM couplings $(a^L, a^R) = (0, 0)$

 $\sigma = \sigma_{SM} + a_{ud}^{L} a_{tb}^{L} (\sigma_{L} - \sigma_{R} \sigma_{SM}) + \left((a_{ud}^{L} a_{tb}^{L})^{2} + (a_{ud}^{R} a_{tb}^{R})^{2} \right) \sigma_{R} + \frac{1}{2} \left((a_{ud}^{L} a_{tb}^{R})^{2} + (a_{ud}^{R} a_{tb}^{L})^{2} \right) (\sigma_{LR} - \sigma_{L} - \sigma_{R})$

- a_{ud} : couplings to first-generation quarks (important for W' production)
- *a*_{tb}: couplings to third-generation quarks (important for W' decay)
- Assumption: $a_{ud} = a_{tb}$
- Event samples are combined wrt previous equation to give predicted invariant mass distributions for each a^L and a^R

Anne-Laure Cunrath Pequegno

			Links

Search for $W' \rightarrow tb$, 13 TeV, leptonic decay of top (only W'_R)

			Links
Selection			

- Exactly 1 electron (muon) with $p_T > 180$ GeV (180) and $|\eta| < 2.5$ (2.1)
 - ▶ Veto on additional charged leptons with $p_T > 35$ GeV and $|\eta| < 2.4/2.5$ (muon/electron)
- Leading jet $p_T > 350 \text{ GeV} (450 \text{ GeV})$
- Second jet *p_T* > 30 GeV
- $E_T^{miss} > 120 (50) \text{ GeV}$
- ΔR (lepton, closest jet) > 0.4 or p_T^{rel} (lepton, closest jet) > 60 (50) GeV
- for electron channel: $|\Delta \Phi(E_T^{miss}, e)| < 2$

Massive resonances search

Vector-like quarks Conc

						Links
Number channel	of selected	data, sign	al, and backgrou	ind events in	the muon	

Process	Number of Events					
		Object S	election		Final Se	election
	\geq 0 b-tags	= 0 b-tags	= 1 b-tags	= 2 b-tags	= 1 b-tags	= 2 b-tags
Data:	770	431	281	58	143	30
Background:						
tī	124	36	64	25	46	16
tqb	7	2	4	1	3	1
tW	17	5	9	3	4	1
ŦW	16	3	9	4	5	2
tb	1	0	0	0	0	0
$W(\rightarrow \ell \nu)+jj$	304	218	80	6	25	1
$W(\rightarrow \ell \nu)+bb/cc$	283	132	128	23	45	7
$Z(\rightarrow \ell \ell)$ +jets	47	26	21	0	12	0
VV	20	17	3	0	0	0
Total Background	$819{\pm}60$	439 ± 36	318 ± 24	62±5	$140{\pm}11$	28±3

						Links
Number	of selected	data, sig	gnal, and backgro	ound events i	in the elec	tron
channel						

Process	Number of Events						
		Object S	Selection		Final Se	election	
	\geq 0 b-tags	= 0 b-tags	= 1 b-tags	= 2 b-tags	= 1 b-tags	= 2 b-tags	
Data:	802	435	309	58	256	44	
Background:							
tĪ	132	40	68	24	52	17	
tqb	8	2	5	2	4	1	
tŴ	22	5	11	6	10	5	
ŦW	20	4	11	4	9	4	
tb	1	0	1	0	1	0	
$W(\rightarrow \ell \nu)+jj$	359	262	89	8	77	7	
$W(\rightarrow \ell \nu) + bb/cc$	306	146	139	22	119	18	
$Z(\rightarrow \ell \ell)$ +jets	9	8	3	-1	4	-1	
VV	26	17	9	0	7	0	
Total Background	883±83	$484{\pm}50$	336 ± 32	65 ± 7	283±22	51±5	

Anne-Laure Cunrath Pequegnot
Search for $W' \rightarrow tb$, 8 TeV, hadronic decay of top

- $t \rightarrow bW \rightarrow bq\bar{q}'$ and high boost: the 3 jets merged in a large single jet
- Jets are reclustered using CA algorithm with distance parameter 0.8
- Combined CMS t-tagging: t-tagger + N subjettiness + b tag info
 - t-tagger:
 - $140 < M_{CA \ Jet} 250 \ \text{GeV}$
 - N_{subjets} > 2 (found by the algorithm)
 - Minimum pairwise mass M_{min} > 50 GeV (consistency with W mass)
 - N subjettiness algorithm:
 - Variables au_N describe consistency between the jet energy and the number N of assumed subjets
 - $\tau_N = \frac{1}{d} \sum_i p_{T,i} \min(\Delta R_{1,i}, \Delta R_{1,i}, ..., \Delta R_{N,i})$, specific constituent particle *i*, subjet candidate J, *d* the normalisation factor ($d = \sum_i p_{T,i} R$)
 - $-\tau_3/\tau_2 < 0.55$
 - b-tag info:
 - CSV b-tag algo applied to all subjets found by the top-tagging algo
 - We require maximum CSV discriminator value to pass CSVM WP (SJ_{CSVMAX} ≥ 0.679)

			Links
0.1			

Selection

- $W' \rightarrow tb$ candidate selected after applying the following selection on the 2 leading jets:
 - One jet with p_T 450 GeV and t-tagged
 - One jet with p_T 370 GeV and b-tagged (CSVM) and mass < 70 GeV</p>
 - 2 jets in opposite hemispheres: $|\Delta \phi| > \pi/2$
 - $|\Delta y| < 1.6$ between the 2 jets

						Links
Number	rs of obser	ved and e	xpected events a	t successives	stages of t	he
event se	lection		1		U	

Solaction	Data	ocn	+Ŧ	$M_{W'_{P}}$	$M_{W'_P}$	$M_{W'_1}$	$M_{W'_1}$
Selection	Data	QCD	u	1.90 TeV	2.10 TeV	1.90 TeV	2.10 TeV
2 jets	13854873	_	12190 ± 27	806 ± 1	401 ± 0.7	796 ± 2	430 ± 2
$p_{\rm T}$	4305244	_	4720 ± 18	739 ± 1	372 ± 0.7	703 ± 2	364 ± 2
$ \Delta y $	3376771	_	4220 ± 17	553 ± 1	268 ± 0.6	531 ± 2	268 ± 1
$M_{\rm t}$	992949	_	3220 ± 14	429 ± 1	209 ± 0.5	414 ± 2	205 ± 1
$N_{subjets}$	557489	_	2740 ± 13	340 ± 0.9	163 ± 0.5	312 ± 2	152 ± 1
M_{\min}	318520	_	2510 ± 13	304 ± 0.9	143 ± 0.4	274 ± 2	130 ± 0.9
SJ _{CSVMAX}	50642	_	1690 ± 10	170 ± 0.6	76 ± 0.3	138 ± 1	63 ± 0.6
τ_3/τ_2	7200	_	1024 ± 8	88 ± 0.5	38 ± 0.2	58 ± 0.7	27 ± 0.4
$M_{\rm b}$	4463	_	178 ± 4	68 ± 0.4	29 ± 0.2	44 ± 0.6	20 ± 0.3
CSV	277	248 ± 4	37 ± 1	16 ± 0.2	6 ± 0.1	10 ± 0.3	4 ± 0.2

				Links
Backgro	ound mode	eling		

- Primary sources of background: SM QCD multijet and *tt* production
- Principal background: QCD multijet production, estimated using a data-driven technique to extract both the shape and the normalization
- Shape of the M_{tb} distribution for $t\bar{t}$ production is estimated from MC simulation, and the yield is measured from data using a control sample enriched in $t\bar{t}$ events
- Control region closure test

0.6 0.8 aL

CMS

-1400

1300

CMS

CMS

aL

aL

Search for resonant $t\bar{t}$ production in boosted semileptonic final states at 13 TeV

			Links
Selection			

- 1 muon (electron) with $p_T > 50$ (50) GeV and $|\eta| < 2.1$ (2.5)
- \geq 2 jets with $|\eta|$ < 2.4
 - ▶ p_T^{jet1} > 150 (250) GeV for muon (electron) channel
 - ▶ p_T^{jet2} > 50 (70) GeV for muon (electron) channel
- No isolation for leptons but 2D requirement instead:
 - ΔR(l, j) > 0.4 or p_T^{rel}(l, j) > 20 GeV (j: small-radius jet with minimum angular separation to the lepton ; p_T^{rel}: magnitude of p_T lepton orthogonal to jet axis)
 - ▶ measurement of lepton 2D-cut efficiency in data using $Z \rightarrow ll$ (tag-and-probe method) CR
- $H_T^{lep} = E_T^{miss} + p_T^{lep} > 150 \text{ GeV} (muon channel)$
- $E_T^{miss} > 50$ (120) GeV for muon (electron) channel
- Veto on additional lepton

				Links
$M_{t\bar{t}}$ reco	nstructior	ı		

- 2 collections of jets:
 - Small-radius jets (AK4 jets)
 - Large-radius jets (AK8 jets)
- Use small-radius jets for b-tagging
- Use large-radius jets for top tagging
 - Soft-drop mass: 110 < M_{SD} < 210 GeV</p>
 - $\sim \tau_{32} < 0.69$
- Events without top-tagged jet: only small-radius jets are used for both hadronic and leptonic top reconstruction
- Events with top-tagged jet: top-tagged jet assigned to hadronic top and only small-radius jets with $\Delta R > 1.2$ from t-tagged jet are used to reconstruct leptonic top decay

$$\chi^2 = \left(\frac{M_{lep} - \bar{M}_{lep}}{\sigma_{M_{lep}}}\right)^2 + \left(\frac{M_{had} - \bar{M}_{had}}{\sigma_{M_{had}}}\right)^2$$

- Take hypothesis with smallest χ^2 (χ^2_{min})
- Signal region: events are required to have $\chi^2_{min} < 30$

Validation of t-tagging variables distributions

- χ^2_{min} < 30: events dominated by $t\bar{t}$ background (plots)
- χ^2_{min} > 30: events dominated by W+jets background
- Good agreement between data and simulation

				Links
Categor	ization			

• 6 categories based on lepton flavour, number of b-tagged and t-tagged jets:

1 t-tag, 0 t-tag + 1 b-tag, 0 t-tag + 0 b-tag

- Final background estimates determined by fitting background-only hypothesis to the data
- Several observables used simultaneously in a binned maximum likelihood fit to constraint different uncertainties of bkg model using the data
- Different observables:
 - M_{tt} in low-mass *l*+jets SR (M_{tt} < 2 TeV, χ^2_{min} < 30):
 - $M_{t\bar{t}}$ in high- χ^2 CR ($\chi^2_{min} > 30$):
 - M_{ll} in dilepton CR (remove lepton veto, Z-mass window 71 < M_{ll} < 111 GeV):
- $\sigma_{t\bar{t}}, \sigma_{W+jets}, \sigma_{Z+jets}$ and t-tag SF left unconstrained in the fit
 - Derived from MLFit

				Links
Main sy	stematics			

Table 1: Summary of largest systematic uncertainties for the tt and W + jets backgrounds and a Z' signal with mass of 2 TeV and relative width of 1%. Shown are the posterior values. Uncertainties affecting all categories equally originate from the luminosity measurement (2.7%), the trigger efficiency (1.3%) and the lepton identification (1.2%). The posterior uncertainties on the cross sections are 6% for both, tt and W + jets production.

	1-toptag			0-toptag, 1-btag			0-toptag, 0-btag		
	tī	W + jets	Z'	tī	W + jets	Z'	tī	W + jets	Z'
t- and b-tagging	6.7%	17.0%	7.3%	1.7%	3.6%	5.8%	6.1%	1.1%	12.1%
Scale uncertainty	4.1%	9.9%	-	5.3%	6.1%	-	5.7%	5.8%	-
PDF	2.7%	4.8%	4.2%	1.5%	3.6%	4.2%	1.8%	3.2%	4.8%

					Link
3 6 1	11	<i>C</i>	1.1 1.1 1 (C++	

$M_{t\bar{t}}$ distributions after maximum likelihood fit

Anne-Laure Cunrath Pequegnot

 $\mathbf{M}_{t\bar{t}}\left[\textbf{GeV}\right]$ New physics in final states with jets or vector bosons

Introduction Dijet search Black holes Massive resonances search Vector-like quarks Conclusion 00 0 0000 000

Number of events in signal region

Table 2: Number of events in the signal region. The expected yields for SM backgrounds are obtained from the maximum-likelihood fit to the data described in the text. The uncertainties reported for the background processes include the MC statistical uncertainties and the posterior systematic uncertainties on the SM cross sections.

$\mu + {\sf jets} \ {\sf signal} \ {\sf region}$			$\langle \rangle$
	1-toptag	0-toptag, 1-btag	0-toptag, 0-btag
tī	218 ± 36	7599 ± 1252	1964 ± 324
W + jets (light-f)	26 ± 2	546 ± 42	4665 ± 353
W + jets (heavy-f)	4±1	332 ± 27	779 ± 61
single-top + $DY + VV$	10 ± 2	683 ± 118	635 ± 80
Total Background	258 ± 36	9160 ± 1258	8043 ± 489
DATA	252	9230	7966
e + jets signal region			
	1-toptag	0-toptag, 1-btag	0-toptag, 0-btag
tī	119 ± 20	1015 ± 167	247 ± 41
W + jets (light-f)	13 ± 1	97 ± 8	680 ± 52
W + jets (heavy-f)	2 ± 0	44 ± 4	84 ± 7
single-top + $DY + VV$	4 ± 1	103 ± 19	75 ± 10
Total Background	138 ± 20	1259 ± 168	1086 ± 67

142

DATA

1005

1217

				Links
Limits s	ummary			

Table 3: Observed and expected excluded mass ranges for the BSM models considered in the statistical analysis. Mass limits are given for the μ + jets and e + jets channels separately and for their combination.

	excluded mass regions [TeV]					
signal	$\mu + jets$ observed (expected)	e + jets observed (expected)	combination observed (expected)			
Z' (1% width)	$0.5 - 1.8 \ (0.6 - 1.9)$	$1.0-1.1, 1.3-2.2\;(0.9-1.7)$	$0.6 - 2.3 \ (0.6 - 2.1)$			
Z^\prime (10% width)	$0.5 - 3.2 \ (0.5 - 3.3)$	$0.5 - 3.2 \ (0.5 - 3.2)$	$0.5 - 3.4 \; (0.5 - 3.5)$			
Z^\prime (30% width)	0.5 - 3.9 (0.5 - 4.0)	0.5 - 3.8 (0.5 - 3.8)	$0.5 - 4.0 \; (0.5 - 4.0)$			
KK gluon	0.5-2.7(0.5-2.8)	$0.6-2.7\;(0.6-2.5)$	$0.5-2.9\;(0.5-2.9)$			

Search for resonant $t\bar{t}$ production at 8 TeV

_		

Search for $t\bar{t}$ resonances

- Many BSM models predict heavy resonances with enhanced coupling to the top
 - Leptophobic topcolor Z' bosons
 - Kaluza–Klein excitations of a gluon in the Randall–Sundrum model
- Model-independent search for the production of heavy resonance decaying into top pair
- Dedicated analyses depending on W decay mode:
 - Dilepton
 - Lepton+jets: one analysis optimized for boosted topologies, one for threshold production of tt (best sensitivity for resonance masses below 0.75 TeV)
 - All-hadronic: 2 different selections, one optimized for higher resonance masses, one for lower resonance masses (decay products still collimated)
- *M_{tt̄}* distributions show no evidence of signal

Anne-Laure Cunrath Pequegnot

Links

Selection: dilepton channel

- 2 leptons of opposite charges (from highly Lorentz-boosted top: non isolated lepton that partially or fully overlaps with the b jet)
 - ee channel: 2 electrons with $p_T > 85/20$ GeV, $|\eta| < 2.5$
 - $e\mu$ channel: 1 muon with $p_T > 45$ GeV and $|\eta| < 2.1$, and 1 electron with $p_T > 20$ GeV, $|\eta| < 2.5$
 - ▶ $\mu\mu$ channel: 2 muons with p_T > 45/20 GeV and $|\eta|$ < 2.1/2.4
- M_{ll} > 12 GeV and outside 76 < M_{ll} < 106 GeV (ee and $\mu\mu$ channels)
- At least 2 jets with $p_T > 100/50$ GeV and $|\eta| < 2.5$
- 2D isolation variable: $\Delta R(l, jet) > 0.5$ or $p_{T,rel}(l, jet) > 15$ GeV ($p_T(l)$ wrt the axis of the closest jet) (using only jets with $p_T > 30$ GeV)
- $E_T^{miss} > 30$ GeV (ee and $\mu\mu$ channels)
- At least 1 of the 2 leading jets required to be b-tagged (CSVM) OR both b-tagged (CVSL)
- $\Delta R(l_1, jet) < 1.2$ and $\Delta R(l_2, jet) < 1.5$

New physics in final states with jets or vector bosons

Links

Dilepton channel: mass reconstruction

- $M(p_{l_1} + p_{l_2} + p_{j_1} + p_{j_2} + p_{\nu_1} + p_{\nu_2}) \sim M(t\bar{t})$
- Use p_{T}^{miss} x and y components as p_x and p_y of the pair of neutrinos, p_z components of each neutrino is set to 0

Selection: lepton+jets channel (boosted analysis)

- Exactly 1 electron with p_T > 35 GeV and $|\eta|$ < 2.5 or 1 muon with p_T > 45 GeV and $|\eta|$ < 2.1
- Veto on a second reconstructed lepton (avoid overlap with dilepton channel)
- At least 2 jets with $p_T > 150/50$ GeV and $|\eta| < 2.4$
- Reject event with ≥2 CA8 t-tagged jets (avoid overlap with all-hadronic channel)
- $\blacksquare E_T^{miss} > 50 \text{ GeV}$
- $\blacksquare p_T^l + E_T^{miss} > 150 \text{ GeV}$
- 2D isolation criteria: $\Delta R(l, jet) > 0.5$ or $p_{T,rel}(l, jet) > 25$ GeV (using only jets with $p_T > 25$ GeV)
- Ensure \vec{p}_T^{miss} not pointing along transverse direction of electron or leading jet: $|\Delta(e \text{ or jet}, \vec{p}_T^{miss}) - 1.5| < E_T^{miss}/50 \text{ GeV}$

Links

Lepton+jets: mass reconstruction

- $\chi^2 = \chi^2_{m_t^{Lep}} + \chi^2_{m_t^{Hadr}}$ < 50, choosing jets combination with smallest χ^2
- In case a CA8 t-tagged jet found: all jets with $\Delta R < 1.3$ from the t-tagged jet removed from list of possible hypotheses
- Electron channel: $p_T^{t,Lep} > 140$ GeV (multijet bkg suppression)

Anne-Laure Cunrath Pequegnot

			Links

Selection: all-hadronic channel

Two exlusive selection:

- One optimized for higher resonance masses:
 - 2 CA8 t-tagged jets with p_T > 400 GeV and |y| < 2.4</p>
 - ▶ $|\Delta \phi| > 2.1$ radians between jets (separated in azimutal angle)
 - Rapidity difference between the 2 jets used to divide events in 2 categories : |\Delta y| < 1.0 and |\Delta y| > 1.0 (QCD multijet bkg with light-quark and gluon FS dominantly populating this region), Z' signal with m = 2 TeV equally split
 - Subdivided again, depending on number of CA8 t-tagged jets containing b-tagged subjet (0, 1, 2) → 6 exclusive search regions with highest sensitivity in the categories with 2 b-tagged CA8 jets

One optimized for lower resonance masses (decay products still somewhat collimated):

- Applied to events that failed high mass selection
- Decay product less collimated
- 2 CA15 t-tagged jets with p_T > 200 GeV and |y| < 2.4</p>
- Sample split: $H_T < 800$ GeV or $H_T > 800$ GeV ($H_T = \sum p_T^{jet}$, using $p_T^{jet} > 50$ GeV)
- Subdivided again wrt number of b-tagged CA15 jets

			Lin

All-hadronic: mass reconstruction

High mass selection

			Links

All-hadronic: mass reconstruction

Low mass selection

Boosted analyses:

- Main source of irreducible background in all channels arises from SM tt production
- In the lepton+jets channels, W+jets production contributes to events without a CA8 t-tagged jet
- Single top quark, Z+jets, and diboson production constitute small backgrounds overall (dilepton and lepton+jets channels)
- Except for the non-top-quark multijet backgrounds in the all-hadronic channels, the shapes of all SM backgrounds are estimated from simulation
- The total yield of the simulated samples is obtained with a maximum likelihood fit to the $M_{t\bar{t}}$ distributions
 - Nuisance parameters are included in the fit to take into account the effect of systematic uncertainties
 - The parameters are constrained using log-normal probability density functions and are fitted simultaneously with the parameters corresponding to the background normalization

Threshold analysis (lepton+jets channel):

Background estimated using data-driven technique

			Links

• • : uncorrelated uncertainties that apply to a given channel

⊕: uncertainties correlated between channel

Source of uncertainty	Prior uncertainty	2ℓ	ℓ+jets	Had. channel high-mass	Had. channel low-mass
Integrated luminosity	2.6%	\oplus	\oplus	\oplus	\oplus
tī cross section	15%	\oplus	\oplus	\oplus	\oplus
Single top quark cross section	23%	\oplus	\oplus		
Diboson cross section	20%	\oplus	\oplus		
Z+jets cross section	50%	\oplus	\oplus		
W+jets (light flavor) cross section	9%		\odot		
W+jets (heavy flavor) cross section	23%		\odot		
Electron+jet trigger	1%		\odot		
H _T trigger	2%			\oplus	\oplus
Four-jet trigger	$\pm 1\sigma(p_T)$				\odot
Single-electron trigger	$\pm 1\sigma(p_{T},\eta)$	\odot			
Single-muon trigger and id	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\oplus	\oplus		
Electron ID	$\pm 1\sigma(p_{\rm T},\eta)$	\oplus	\oplus		
Jet energy scale	$\pm 1\sigma(p_{\rm T},\eta)$	\oplus	\oplus	\oplus	\oplus
Jet energy resolution	$\pm 1\sigma(\eta)$	\oplus	\oplus	\oplus	\oplus
Pileup uncertainty	$\pm 1\sigma$	\oplus	\oplus	\oplus	\oplus
b tagging efficiency ^(†)	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\oplus	\oplus		\oplus
b tagging mistag rate ^(†)	$\pm 1\sigma(p_{\rm T},\eta)$	\oplus	\oplus		\oplus
CA8 subjet b tagging	unconstrained			\odot	
CA8 t tagged jet efficiency	unconstrained		\oplus	\oplus	
CA8 t-tagged jet mistag	$\pm 25\%$		\odot		
CA15 t-tagged jet efficiency	$\pm 1\sigma(p_{T},\eta)$				\odot
QCD multijet background	sideband			\odot	\odot
PDF uncertainty	$\pm 1\sigma$	\oplus	\oplus	\oplus	\oplus
tt ren. and fact. scales	$4Q^2$ and $0.25Q^2$	\oplus	\oplus	\oplus	\oplus
W+jets ren. and fact. scales	$4Q^2$ and $0.25Q^2$		\odot		
W+jets matching scale µ	2μ and 0.5μ		\odot		
MC statistical uncertainty		\odot	\odot	\odot	\odot

^(†) AK5 and CA15 subjets

Anne-Laure Cunrath Pequegno

				Links
Lower n	nass limits	6		

		Mass limit [TeV]								
	Dilepton	channel	Lepton+j	ets channel	All-hadro	nic channels	Com	bined		
	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.		
$Z', \Gamma_{Z'}/M_{Z'} = 1.2\%$	1.4	1.5	2.2	2.3	2.1	2.1	2.4	2.4		
$Z^\prime,\Gamma_{Z^\prime}/M_{Z^\prime}=10\%$	2.1	2.2	2.7	2.8	2.5	2.5	2.8	2.9		
RS KK gluon	1.8	2.0	2.5	2.5	2.4	2.3	2.7	2.8		

			Link

Observed and expected limits

$M_{Z'}$ (TeV)	Expected (pb)	Expected range $(\pm 1\sigma)$ (pb)	Expected range $(\pm 2\sigma)$ (pb)	Observed (pb)
0.75	0.61	0.89 — 0.43	1.3 — 0.32	0.86
1.0	0.18	0.27 — 0.13	0.37 — 0.099	0.088
1.25	0.082	0.12 — 0.058	0.18 — 0.042	0.14
1.5	0.04	0.057 — 0.028	0.089 — 0.02	0.041
2.0	0.013	0.02 — 0.009	0.029 — 0.0067	0.011
3.0	0.0086	0.013 — 0.0059	0.021 — 0.0043	0.0059
		$Z', \Gamma_{Z'}/N$	$A_{Z'} = 10\%$	
$M_{Z'}$ (TeV)	Expected (pb)	Expected range $(\pm 1\sigma)$ (pb)	Expected range $(\pm 2\sigma)$ (pb)	Observed (pb)
0.75	0.83	1.2 — 0.57	1.8 — 0.42	0.89
1.0	0.26	0.37 — 0.18	0.53 — 0.14	0.13
1.25	0.13	0.19 — 0.09	0.26 — 0.067	0.22
1.5	0.063	0.089 - 0.044	0.13 — 0.03	0.064
2.0	0.023	0.034 - 0.016	0.055 — 0.011	0.018
3.0	0.023	0.036 — 0.016	0.055 — 0.011	0.017
		RS KK	gluon	
$M_{g_{KK}}$ (TeV)	Expected (pb)	Expected range $(\pm 1\sigma)$ (pb)	Expected range $(\pm 2\sigma)$ (pb)	Observed (pb)
0.7	1.7	2.5 — 1.2	3.8 — 0.84	3.5
1.0	0.42	0.6 — 0.28	0.84 — 0.21	0.24
1.4	0.16	0.23 — 0.11	0.32 — 0.078	0.25
1.5	0.12	0.17 — 0.083	0.24 — 0.059	0.15
1.8	0.064	0.098 — 0.045	0.15 — 0.032	0.056
2.0	0.05	0.074 - 0.034	0.12 — 0.024	0.038
2.5	0.045	0.068 — 0.03	0.11 — 0.021	0.034
3.0	0.059	0.088 — 0.039	0.15 — 0.028	0.041

Search for $T\bar{T}$

Links

Search for vector-like charge 2/3 T quarks: summary

- Vector-like quarks predicted in BSM models as little Higgs, composite Higgs, extra-dimensions: could solve the hierarchy problem by canceling the divergent radiative corrections to the Higgs mass
- Benchmark model: vector-like T quarks with charge 2/3 produced in pairs via strong interaction, decaying to tH, tZ, bW
- Combination of 5 analyses optimized for different event topologies:
 - Inclusive in branching fractions (single and multi leptons channel): can set limits for all T decay modes
 - ▶ $T \rightarrow bW$: both T decay in bW (single lepton channel)
 - All-hadronic search for $T \to tH$ (at least one T decay as $T \to tH \to (bq\bar{q'})(b\bar{b})$)
 - All-hadronic search for $T \rightarrow bW$ (both T in bW and W in $q\bar{q'}$)
 - T \rightarrow *tH* with *H* $\rightarrow \gamma \gamma$ (leptonic and hadronic channel targetting different t decay modes)
- High Lorentz boost: boosted t and boosted W identified using t- and W-tagging
- Statistical combination using a Bayesian method:
 - To avoid double counting between 1 and 2: in 1, use results from 2 if $\mathcal{B}(T \rightarrow bW) > 80\%$, else use results from 1
 - No overlap between 3-5 and 1: always combined
- Depending on the BR, expected (observed) 95% CL limits in [790, 890] GeV ([720, 920] GeV)

				Liı
T 1 .	1	 1 1		

Inclusive search with single and multiple leptons

Single lepton channel

Selection:

- Exactly 1 isolated muon or electron with *p*_T > 32 GeV
- At least 5 AK5 jets with $p_T > 120/90/50$ GeV
- A 4th AK5 jet with *p*_T > 35 GeV required if no W jet found
- Boosted W tag algorithm:
 - Requires 2 subjets reconstructed by pruning algorithm
 - Pruned jet mass should be compatible with W mass: $p_T > 200$ GeV and 60 < M < 130 GeV
- Jets must be separated from the muon (electron) by $\Delta R > 0.4$ (0.3)
- $\blacksquare E_T^{miss} > 20 \text{ GeV}$

Background discrimination: BDT

- Different BDTs for event with and without W jets, and for each T mass hypothesis, trained irrespective of BR of T (no improvement)
- Variables: jet multiplicity, b-tagged jet multiplicity, E_T^{miss} , lepton p_T , 3rd jet p_T , 4th jet p_T , $H_T = \sum p_T^{all \, jets}$ with $p_T^{jet} > 30 \text{ GeV}$
- Events with \geq W tagged jet: add W jet multiplicity, W jet p_T , number of t-tagged jets

	Muon	Electron
Total background	61900 ± 13900	61500 ± 13700
Data	58478	57743

Inclusive search with single and multiple leptons

Single lepton channel

Inclusive search with single and multiple leptons

Single lepton channel

					Links
Inclusiv	e search w	vith single	and multiple lep	otons	

Multilepton channel

• 4 mutually exclusive subsamples with at least 2 leptons:

- ▶ Multilepton sample: ≥ 3 leptons
- OS1 dilepton sample: targets events where both T decay to bW
- 0S2 dilepton sample: targets events where both T decay to tZ
- SS sample: targets events where at least 1 T decays to tZ or tH

	OS1	OS2	SS	Multileptons
$H_{\rm T}$ (GeV)	> 300	> 500	> 500	> 500
S_{T} (GeV)	> 900	> 1000	>700	>700
Number of jets	2 or 3	≥ 5	≥3	≥ 3
b tags	≥ 1	≥ 2	≥ 1	≥ 1
E_T^{miss} (GeV)	> 30	> 30	> 30	> 30
$M_{b\ell}$ (GeV)	> 170	_	_	_
$M_{\ell\ell}$ (GeV)	> 20	> 20	> 20	> 20
Z boson veto	yes	no	no	no

	OS1	OS2	SS	Multileptons
Total background	17.4 ± 3.7	84 ± 12	16.5 ± 4.8	3.7 ± 1.3
Data	20	86	18	2

Introduction Dijet search Black holes Massive resonances search Vector-like quarks Conclusion Links

Search for $T \rightarrow bW$ with single leptons

- Analysis optimized for events where both T decay into bW
- At least 4 jets: either 4 AK5 jets or 3 AK5 + 1 CA8 jets
- CA8 jet used to identified merged hadronic decays of W with high Lorentz boost
- AK5 jets replaced by the 2 pruned subjets of CA8 W tagged jet if mathching criterion fullfilled: $\Delta R(Jet_{CA8}, Jet_{AK5}) < 0.04$
- Unmatched AK5 jets and subjets of matched W-tagged CA8 used as input for a kinematic fit
- Kinematic fit:
 - Hypothesis: $T\bar{T} \rightarrow bW^+\bar{b}W^- \rightarrow l\nu bq\bar{q}'\bar{b}$
 - Constraints: $m(l\nu) = m(q\bar{q}') = M_W$ and $m(l\nu b) = m(q\bar{q}'b) = M_{fit}$ (fitted mass of selected T candidate)
 - E_T^{miss} attributed to the undetected neutrino
 - Only events with p(χ²) > 1% considered
 - Best combination selected from groups of fit combinations with decreasing b tag multiplicity, ranked by the b tagging
 operating point

			Links

Search for $T \rightarrow bW$ with single leptons

	Selection (ST	> 1000 GeV)	Selection (ST	> 1240 GeV)
	μ +jets	e+jets	μ +jets	e+jets
tī	325 ± 37	279 ± 35	51 ± 6	52 ± 6
$W+ \ge 3jets$	49 ± 8	60 ± 9	18 ± 3	19 ± 4
Single top	20 ± 5	36 ± 10	6.9 ± 2.3	10 ± 4
$Z/\gamma^* + \ge 3$ jets	3.9 ± 0.8	3.3 ± 0.6	1.4 ± 0.4	1.1 ± 0.3
WW, WZ, ŻZ	3.1 ± 1.0	< 1	< 1	< 1
Multijet	< 1	18 ± 4	< 1	6.1 ± 1.7
Total background	401 ± 38	396 ± 38	77 ± 7	88 ± 9
Data	417	398	81	83

Search for $T \rightarrow bW$ with single leptons

After the full selection, combining μ +jets and e+jets

Introduction Dijet search Black holes Massive resonances search Vector-like quarks Conclusion OO O OOO OOO OOO

Search for $T \rightarrow tH$ in all-hadronic channel

- $T \to tH$ with $t \to bW \to bq\bar{q}'$ and $H \to b\bar{b}$
- Significant Lorentz boost for t and H
- \blacksquare Events divided in 2 categories to maximize the analysis sensitivity: 1 H tag and \geq 2 H tag categories
- H_T^{sub} (sum p_T of subjets of CA15 jets) and $m_{b\bar{b}}$ (mass of 2 b-tagged subjets in H-tagged jets):
 - Used for setting limits on T production cross section
 - Combined in a single discriminator using a likelihood ratio method for the final event selection

Variable	Selection
H ^{sub}	> 720 GeV
Number of CA15 jets	≥ 2
p _T CA15 jets	>150 GeV
p_T t-tagged jets	$>200\mathrm{GeV}$
Number of t tags	≥ 1
Number of H tags	≥ 1

	Single H tag category	Multiple H tags category
Total background	1403 ± 14	182 ± 5
Data	1355	205

Search for $T \rightarrow bW$ in all-hadronic channel

- Optimized for events where both T decay as: $T \rightarrow bW \rightarrow bq\bar{q}'$
- 2 categories: 1 or \geq 2 b-tagged jets
- After selection, reconstruct 2 T candidates T_1 and T_2 indentifying the combinations of W jets and AK5 jets having the smallest invariant mass difference

$$a_f = |m(T_1) - m(T_2)| / (m(T_1) + m(T_2))$$

• $H_T^{4 jets}$: scalar p_T sum of the 4 jets used to reconstruct the T candidates

0 1 0	TT (TT	· · 1 TT		

Search for $T \to tH$ with $H \to \gamma\gamma$

- Optimized for events where one T decays as: $T \rightarrow tH \rightarrow t\gamma\gamma$
- Main advantage: $m_{\gamma\gamma}$ precisely measured ($m_{\gamma\gamma}$ would be present for signal events)
- Disadvantage: small $H \rightarrow \gamma \gamma$ BR (~ 2.10⁻³)
- 2 channels:
 - Leptonic channel: events with a pair of photons and at least one isolated high p_T muon or electron
 - Hadronic channel: events with a pair of photons and no isolated muon or electron

Variable	Leptonic channel	Hadronic channel
$p_{\rm T}(\gamma_1)$	$>\frac{1}{2}m_{\gamma\gamma}$	$> \frac{3}{4}m_{\gamma\gamma}$
$p_{\rm T}(\gamma_2)$	25 GeV	35 GeV
Number of jets	≥ 2	≥ 2
ST	\geq 770 GeV	$\geq 1000 \text{GeV}$
Leptons	≥ 1	0
b tags	_	≥1

	Leptonic channel	Hadronic channel
tīH	$0.039^{+0.005}_{-0.006}$	$0.042^{+0.005}_{-0.006}$
Nonresonant background	$0.11\substack{+0.07\\-0.03}$	$0.65_{-0.13}^{+0.16}$
Total background	$0.15^{+0.07}_{-0.03}$	$0.69^{+0.16}_{-0.13}$
Data	0	2

Combination: systematics

- \checkmark : uncertainty has been taken into account in the analysis, but is not correlated with the other analyses
- Otherwise : uncertainty has been taken into account in the analysis, but is correlated with the other analyses

	Single	Inclusive	Multiple	All-had.	All-had.	${ m H} ightarrow \gamma \gamma$
Uncertainty	leptons	leptons	leptons	$T \to b W$	$T \to t H$	
Int. luminosity						
Trigger	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Lepton ID						
Photon ID						\checkmark
Photon energy						\checkmark
Pileup jet ID						\checkmark
Jet energy scale						
Jet energy resolution						
Unclustered energy	\checkmark					
b tag SF						
b tag mistag SF						
t tagging SF					\checkmark	
tt μ R and μ F scale						
tt cross section						
tī PDF						
QCD background				\checkmark	\checkmark	
Other backgrounds	\checkmark			\checkmark		✓

Anne-Laure Cunrath Pequegno

New physics in final states with jets or vector bosons

Massive resonances search

Vector-like quarks

Limits on branching fractions

Search for vector-like charge -1/3 B quarks

- Search for vector-like charge -1/3 B quarks produced strongly in pairs, decaying to tW (charged-current process) or to bZ or bH (FCNC)
- 5 combined channels defined by signal discriminating variable and B decay mode providing the best sensitivity for the channel #

• We define
$$H_T = \sum_i p_T^{jet i}$$
 and $S_T = \sum_i p_T^{jet i} + p_T^l + E_T^{miss}$

Channel	N _{leptons}	Discr. var.	Best decay mode
l+jets	1	S_T	tW
SŚ dilept.	2	S_T	tW
OS dilept.	2	M(llb)	bZ
Multilept.	> 3	S_T	tW, bZ
All-hadr.	0	H_T	bH

- High Lorentz boost regime: hadronically decaying W, Z or Higgs products merged in a single jet (CA clusterisation, pruning, N-subjetiness, mass drop)
- Combination: joint likelihood maximization performed using a Bayesian approach

19.7 fb⁻¹ (8 TeV)

95 % CL M(B) ex	clusion minit (C	sev)
Exclusive decay mode	Expected	Observed
$B \rightarrow tW$	890	880
$B \rightarrow bH$	810	900
$B \rightarrow bZ$	740	750

Search for $T\bar{T}/Q\bar{Q}$

			Links
C . 1			

Selection

- Exactly one charged isolated muon (electron) with $p_T > 45$ (30) GeV and $|\eta| < 2.1$ (2.5)
 - Veto events with a second loose electron or muon
- At least 4 jets (|η|<2.4):
 - at least 4 AK5 jets (p_T > 30 GeV)
 - OR at least 3 AK5 jets and at least 1 CA8 jet (p_T > 200 GeV) for the case when CA8 jet overlaps with AK5 jet
- $E_T^{miss} > 20$ (30) GeV
- Pruning algo to reveal CA8 jet substructure:
 - ▶ 60 GeV < M(pruned jet) < 100 GeV (close to W mass) → then jet is tagged as W</p>
- For each W-tagged CA8 jet:
 - Check if it overlaps with an AK5 jet
 - If so, replace AK5 jet by the 2 subjet of matching CA8 jet
 - Mathcing criteria: ΔR(CA8 jet, AK5 jet) < 0.04
 - For further analysis, use unmatched AK5 jets and subjets of matched W-tagged CA8 jets (used as input of KF)
- Highest *p*_T ordered four jets of the collection: *p*_T > 120 GeV, 90 GeV, 50 GeV, 30 GeV

Vector-like qua

T/Q mass reconstruction

- Assignment of reconstructed objects to the final state objects
- Constrained kinematic fit which improves reco objects resolution
- E_T^{miss} used as an estimate of p_T^{ν} for the fit
- W-tagged subjets used in pair and are assigned to W hadronic
- $\chi^2 > 0.1\%$ required
- For $T\bar{T} \rightarrow b_l b_h WW$:
 - Choose combination with smallest \(\chi_2\) selected from groups of fit combinations with decreasing b-tag content of the jet pair matched to the quark pair b_l, b_h:
 - 2 CSVM btags
 - 1 CSVM and 1 CSVL btags
 - 1 CSVM btag only
 - 2 CSVL btags
- For $Q\bar{Q} \rightarrow q_l q_h WW$:
 - Use of QGT info: impose a 2D cut excluding combinations in which both light quark jets have discriminant values favoring gluons
 - Events with W-tagged jet: choose combination with smallestχ², selected from groups of fit combinations with decreasing CSVL b-tag content of q_l, q_h jet pair:
 - 0 CSVL b-tags
 - 1 CSVL btag only and no CSVM btags
 - 2 CSVL btags and no CSVM btags
 - Events without W-tagged: btag veto on q_l, q_h quark pair (require no b-tag to be present)

■ $S_T = p_T^l + E_T^{miss} + p_T^{l1} + p_T^{l2} + p_T^{l3} + p_T^{l4} > 1000$ GeV computed after KF strongly suppress $t\bar{t}$ dominant background

				Links
KinFit c	onstraints			

$$m(l
u) = M_W$$

 $m(q \overline{q}') = M_W$

$$m(l\nu b) = m(q\bar{q}'b) = M_{fit}$$

(or $m(l\nu q) = m(q\bar{q}'q) = M_{fit}$)

				Links
$S_T \operatorname{vs} M_{ft}$	it			

- Number of data and expected MC background events for bWbW and qWqW channels after the event selection
- The cross sections used to normalize the MC backgrounds are also shown
- The first uncertainty on the MC prediction is statistical and the second systematic

		bWbW	bWbW	qWqW	qWqW
Channel		μ + jets	e + jets	μ + jets	e + jets
Backgr. proc.	Cross sect.	Events	Events	Events	Events
tī	239 pb	$325\pm5\pm37$	$279\pm5\pm35$	$257\pm5\pm34$	$269\pm5\pm\pm36$
$W+ \ge 3jets$	885 pb	$49\pm5\pm6$	$60\pm5\pm7$	$396\pm13\pm30$	$462\pm14\pm39$
Single-t	116 pb	$20\pm2\pm5$	$36\pm4\pm9$	$13\pm2\pm3$	$25\pm3\pm6$
$Z/\gamma^* + \ge 3$ jets	89 pb	$3.9\pm0.6\pm0.5$	$3.3\pm0.5\pm0.4$	$27\pm2\pm2$	$27\pm2\pm4$
WW, WZ, ZZ	107 pb	$3.1\pm0.8\pm0.6$	< 1	$10\pm1\pm4$	< 1
Multijets	-	< 1	$18\pm3\pm2$	< 1	$59\pm4\pm8$
Total backgr.		$401\pm7\pm37$	$396\pm8\pm37$	$703\pm14\pm45$	$842\pm16\pm54$
Total observed		417	398	741	896

				Links
Selection	n efficienc	У		

Assumed T/Q masses, theoretical cross sections, selection efficiencies (including acceptance and the branching fraction of the bWbW and qWqW system into single-muon and single-electron final states) and numbers of expected bWbW and qWqW signal events in the μ+jets and e+jets channels

M _T (GeV)	Cross section (pb)	μ+jets eff. (%)	Events	e+jets eff. (%)	Events
500	0.590	1.73 ± 0.04	202	1.59 ± 0.04	183
600	0.174	2.93 ± 0.06	101	3.07 ± 0.06	104
700	0.0585	3.70 ± 0.06	43	3.70 ± 0.06	42
800	0.0213	3.93 ± 0.07	17	4.10 ± 0.07	17
900	0.00828	4.01 ± 0.07	6.6	4.19 ± 0.07	6.9
1000	0.00336	3.83 ± 0.07	2.5	4.20 ± 0.07	2.7
M_Q (GeV)	Cross section (pb)	μ +jets eff. (%)	Events	e+jets eff. (%)	Events
500	0.590	1.96 ± 0.05	228	1.93 ± 0.05	222
600	0.174	3.26 ± 0.06	112	3.46 ± 0.06	117
700	0.0585	4.18 ± 0.07	48	4.26 ± 0.07	48
800	0.0213	4.66 ± 0.07	20	4.67 ± 0.07	20
900	0.00828	4.95 ± 0.08	8.1	5.04 ± 0.08	8.2
1000	0.00336	5.02 ± 0.11	3.3	5.01 ± 0.11	3.3

				Links
Systema	tics			

	bWbW	bWbW	qWqW	qWqW
	signal	BG	signal	BG
JES	1.5%	5.2%	1.3%	5.0%
JER	0.2%	1.7%	0.2%	1.6%
b-tag heavy flavour	3.1%	2.2%	0.3%	1.4%
b-tag light flavour	0.1%	1.1%	0.9%	1.9%
Unclustered energy	0.2%	0.4%	0.2%	0.6%
Q^2 scale	-	6.1%	-	3.0%
Pileup	0.3%	0.5%	0.3%	0.5%
PDF	1.5%	+9.6% -7.3%	1.4%	+9.0% -6.5%

			Linl

Limits extraction

- Monte Carlo studies show that fit sensitivity is optimized with the requirement *S*_T > 1240 GeV
- Distributions below: after $S_T > 1240$ GeV requirement, used for limit calculation

- The 95% CL upper limits on the production cross section of $T\bar{T}/Q\bar{Q}$ computed using a Bayesian interpretation
- Perform binned likelihood fit to the data distribution

Anne-Laure Cunrath Pequegnot

Search for $X_{5/3}$

				Links
Product	ion			

- Pair production via QCD process
- In this note, 2 different final states:
 - Dilepton channel: the 2 W bosons decay into same sign leptons while the other 2 decay inclusively
 - Semileptonic channel: 1 W decays leptonically (1 lepton, 1 neutrino) and the other 3 W decay hadronically

				Links
MC samp	oles			

 \blacksquare $X_{5/3}$ signal samples produced with Madgraph 5 and Pythia 8 generators for both LH and RH coupling scenarios

X _{5/3} Mass (GeV)	Cross Section [fb]
700	442
800	190
900	88
1000	43
1100	22
1200	11
1300	6.2
1400	3.4
1500	1.9
1600	1.1

			Links
 -			

SS dilepton channel: selection

Charge measurement for electron:

- Require that different charge measurementsagree
- 2 measurements based on 2 different tracking algorithms:
 - the standard CMS track reconstruction algorithm
 - the Gaussian Sum Filter algorithm
- 3rd measurement: based on the relative position of the calorimeter cluster and the projected track from the pixel seed
- Good agreement between the 3 measurements for electrons with $p_T < 100 \text{ GeV}$
- For higher p_T , 5-10% loss in signal efficiency related to the 3rd measurement: do not impose a requirement on the 3rd charge measurement

SS dilepton channel: selection

- 2 tight isolated ($I_{rel} < 0.1$ (0.2) for electron (muon)), same-sign leptons with $p_T > 30$ GeV
- Quarkonia Veto: *M*_{ll} > 20 GeV
- Associated Z-boson Veto: veto any event where either of the leptons in the same-sign pair reconstructs to within 15 GeV of the mass of the Z-boson with any other lepton in the event not in the same-sign pair
- Primary Z-boson Veto: invariant dilepton mass (M_{ll}) > 106.1 or < 76.1 GeV for dielectron channel only. If the muon charge is mismeasured, its momentum will also be mismeasured so a selected muon pair from a Zboson will not fall within this invariant mass range
- Leading lepton *p*_T > 40 GeV
- Number of Constituents = N(AK4 jets) + N(other leptons ie not in the SS pair) ≥ 5
- $H_T^{lep} = \sum_i p_T^{jet i} + p_T^{tight \, leptons} > 900 \text{GeV}$

Backgrounds fall into 3 main categories:

- **Same-sign prompt leptons**: standard model processes leading to prompt, same-sign dilepton signatures. Their contribution is obtained from theoretical predictions
 - ► Diboson production (WZ or ZZ) or rare processes like *tt*W, *tt*Z, *tt*H, WWZ, ZZZ, WZZ, W[±]W[±] etc
- **Opposite sign prompt leptons**: prompt leptons could be mis-reconstructed with the wrong charge leading to a same-sign dilepton final state (data driven method)
- Same-sign events arising from the presence of one or more non-prompt leptons: this is the primary instrumental background arising from jets being mis-identified as leptons, non-prompt leptons passing tight isolation selection criteria, etc. This con- tribution is estimated using a data driven method

SS dilepton channel: opposite sign prompt leptons background

- For muons: charge misidentification rate is extremely small (of order 10⁻⁴) and its contribution to the background is negligible
- For electrons:
 - Charge misidentification probability ($\sim 10^{-3}$) derived from a data sample dominated by Z+jets events obtained by selecting dileptons with M_{ll} consistent with M_Z , Proba = N(SS Z candidates)/N(total Z candidates)
 - The number of expected same-sign events due to charge misidentification is then estimated by considering the total number of events passing the full selection, but having oppositely charged leptons
 - These events are weighted by the charge misidentification probability parametrized as a function of the electron p_T and η to obtain the contribution of this background type

			Links
 -			

SS dilepton channel: Systematics

Source	Value	Application
Electron ID	1%	per electron
Electron ISO	1%	per electron
Electron Trigger	3%	per event
Muon ID	1%	per muon
Muon ISO	1%	per muon
Muon Trigger	3%	per event
Electron-Muon Trigger	3%	per event

Background Process	JES	Theory
ttW	4%	20%
ttZ	3%	12%
ttH	8%	14%
WZ	5%	12%
ZZ	4%	12%
W+W+	4%	50%
WWZ	4%	50%
WZZ	6%	50%
ZZZ	6%	50%
tttt	6%	50%

Introduction Dijet search Black holes Massive resonances search Vector-like quarks Conclusion Links

SS dilepton channel: H_T^{lep} distributions

- After applying the quarkonia veto, associated Z-boson veto, primary Z-boson veto, and a requirement of at least two AK4 jets in the event
- Illustrative purposes only: the full selection is not applied to them due to limited statistics
- Both statistical and systematic uncertainties are included

New physics in final states with jets or vector bosons

Introduction Dijet search Black holes Massive resonances search Vector-like quarks C OO O OOO OOO OOO OOO

- No significant excess in the data over the background prediction
- Proceed to set limits and calculate both expected and observed limits using the theta package and Bayesian statistics using a flat prior on the signal
- Expected/observed limits of 860/950 (820/910) GeV for a right (left) handed X_{5/3} at 95% CL
- Table: right handed X_{5/3} of mass 800 GeV

Channel	PSS MC	NonPrompt	ChargeMisID	Total Background	800 GeV X5/3	Observed
Di-electron	2.41 ± 0.29	2.16 ± 1.91	1.90 ± 0.60	6.47 ± 2.02	4.38	7
Electron-Muon	2.98 ± 0.36	5.20 ± 3.21	0.54 ± 0.18	8.72 ± 3.24	9.14	3
Di-muon	0.70 ± 0.12	2.09 ± 1.69	0.00 ± 0.00	2.80 ± 1.70	3.55	1
All	6.09 ± 0.67	9.45 ± 5.49	2.44 ± 0.76	17.98 ± 5.58	17.06	11

			Links

Semileptonic channel: selection

- Preselection:
 - ▶ $p_T^l > 50 \text{ GeV}$
 - *E_T^{miss}* > 100 GeV
 - N(AK4 jets with p_T > 30 GeV and |η| < 2.4) ≥ 3</p>
 - Leading jet p_T > 200 GeV
 - Subleading jet p_T > 90 GeV
 - ► ≥ 1 btag jet
 - ▶ High Lorentz boost for $X_{5/3}$ → boosted hadronic W decay products merge in a single jet: \geq 1 W-tagged jet
 - Pruning algo
 - $p_T > 200 \text{ GeV}$
 - |η| < 2.4</p>
 - 65 GeV < M(pruned jet) < 105 GeV
 - $-\tau_2/\tau_1 < 0.55$
- Final selection:
 - ▶ ≥ 4 jets
 - ▶ $p_T^l > 80 \text{ GeV}$
 - $\Delta R(l, \text{sub-leading jet}) > 1.0$

Defining 8 categories depending on:

- lepton flavor (e, μ)
- b tagged jets (1, 2+)
- W tagged jets (0, 1+)
Introduction Dijet search Black holes Massive resonances search Vector-like quarks Conclusion Links 00 0 0 000 000 Semileptonic channel: min[M(l, b)]

- min[M(l, b)]: mass constructed from the lepton *l* and b-tagged jet
- In case of more than 1 btagged jet: minimum mass from the possible pair pairs of lepton and b-tagged jet
- Plots after final selection, (top) 0 or (bottom) 1+ boosted W tagged jets and (left) 1 or (right) 2+ b tagged jets categories for combined electron and muon samples

Semileptonic channel: plots at preselection level

Semileptonic channel: discriminating variables

• After preselection $+ \ge 4$ jets $+ p_T^l > 80$ GeV

Semilept	onic char	nel: num	ber of events afte	r final selecti	on

Sample	0 W, 1 b	0 W, 2+ b	1+W,1b	1+ W, 2+ b
LH X _{5/3} (0.8 TeV)	8.02 ± 0.48	7.04 ± 0.43	14.15 ± 0.83	12.53 ± 0.74
RH X _{5/3} (1.2 TeV)	0.598 ± 0.036	0.486 ± 0.029	1.381 ± 0.080	1.116 ± 0.065
EWK	185 ± 47	25.8 ± 6.7	48 ± 12	7.1 ± 2.0
Тор	664 ± 90	421 ± 87	337 ± 46	222 ± 46
QCD	2.03 ± 2.02	0.006 ± 0.006	0.001 ± 0.001	< 0.001
Total Bkg	850 ± 105	446 ± 87	384 ± 48	229 ± 46
Data	768	400	347	182

Links

					Links
Semilep	tonic chan	nel: back	grounds		

- top quark backgrounds: dominated by $t\bar{t}$ pair production ; also single top quark production process and the rare SM processes $t\bar{t}W$ and $t\bar{t}Z$
- EW backgrounds: dominated by W+jets ; also Z+jets, diboson (WW, WZ, ZZ)
- QCD multijet backgrounds

Semileptonic channel: backgrounds modeling

- Bkg is estimated from simulation
- Cross-check: define 2 different CR for the 2 dominant bkgs:
 - - All final selection but reversed $\Delta R(l, \text{sub-leading jet})$ selection (< 1.0) and ≥ 1 btag jet (as in final selection)
 - 2 categories: exactly 1 btagged jet and ≥ 2 btagged jets
 - V+jets CR:
 - All final selection but reversed $\Delta R(l, \text{sub-leading jet})$ selection (< 1.0) and 0 btag jet
 - Use all jets in the event as b jet candidate to construct min[M(l, b)] (denoted as min[M(l, jets)])
 - − 2 categories: 0 W-tagged jets and ≥ 1 W-tagged jets
- In both CRs, bkg predictions based on MC in reasonable agreement with the data (see next slide)
- Comparison of the observed and the predicted yields in the CRs for each of the 8 categories used as a closure test for background modeling
- Difference in the yields is assigned as a systematic uncertainty in background modeling

Semileptonic channel: bkg CRs

- $t\bar{t}$ CR, for 1 b tagged jet (top left) and 2+ b tagged jets (top right) categories
- V+jets CR, for zero W tagged (bottom left) and 1+ W tagged jet (bottom right) categories
- For combined electron and muon event samples

Links

			Links

Semileptonic channel: systematics

Source	Uncertainty	Signal	Background
Normalization only			
Luminosity	4.6%	Yes	All
Trigger Efficiency	3%	Yes	All
Lepton efficiencies	1%	Yes	All
"Top bkg": tī, Single top, tī+W/Z cross-sections	5.5%	No	
"EWK bkg": W+jets, Diboson cross sections	5%	No	
"Top bkg" modeling, based on the CR	11-19%	No	
"EWK bkg" modeling, based on the CR	24%	No	
QCD multijet cross-sections	50%	No	
Shape and Normalization			
Jet Energy Scale	$\pm \sigma(p_T, \eta)$	Yes	All
Jet Energy Resolution	$\pm \sigma$	Yes	All
b tagging	$\pm \sigma$	Yes	All
W tagging: mass resolution	$\pm \sigma$	Yes	All
W tagging: mass scale	$\pm \sigma$	Yes	All
W tagging: τ_2/τ_1	$\pm \sigma$	Yes	All
Top $p_{\rm T}$	Δ (weighted,nominal)	No	tī
Pileup	$\sigma_{\rm minbias} \pm 5\%$	Yes	All
Parton Shower Scale	$\pm \sigma$	No	tī, single top
Shape only			
PDF	$\pm \sigma$	Yes	All
Renormalization Scale	$\pm \sigma$	Yes	All
Factorization Scale	$\pm \sigma$	Yes	All

			Link

Semileptonic channel: limits

RH

CMS Preliminary, 2.2 fb⁻¹ (13 TeV)

····· 95% CL expected

1₀ expected

2σ expected

····· Signal Cross Section

95% CL observed

