Heavy flavor, QCD & soft physics

recent results from CMS @ LHC

Nuno Leonardo

on behalf of the CMS Collaboration

La Thuile 2016: Les Rencontres de Physique de la Vallée d'Aoste 6-12 Mar 2016, La Thuile, Italy

motivation

- CMS goals (in QCD & flavor physics)
- Understand underlying QCD processes
 - particle production measurements
 - measure known states and look for new and exotic ones
 - important backgrounds for NP searches, MC tuning
 - study QCD matter under extreme conditions
- Test the standard model to high precision
 - decay rates, lifetime, CP phases, asymmetries
- Search for new physics (NP) in the loop
 - rare decays, eg b \rightarrow sll transitions

If these particles cannot be observed in direct searches, this is how one shall still look for them

the CMS detector

the ompact uon olenoid detector

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

Lead tungstate E/M Calorimeter (ECAL)

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

the Compact Solenoid détector

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

Lead tungstate E/M Calorimeter (ECAL)

pt resolution 1-2% impact parameter resolution ~15 μ m dimuon mass resolution ~0.6-1.5% p($\mu \mid K, \pi, p$) < 0.1% (MVA ID for B $\rightarrow \mu\mu$) Hun Charged Hadron (e.g. Neutron) Photon Winter Photon Charged Hadron (e.g. Neutron) Photon Charged Hadron (e.g. Neutron) Charged Hadron (e.g. Neut

> All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

underlying event

- measurements of underlying event activity at I3TeV compared to previous measurements at lower energies
 - used data collected July 2015, 280nb⁻¹ PU~1.3; pT, trk>0.5GeV
 - average particle and energy densities in transverse region
- data in reasonable (10-20%) agreement with tested tunes

La Thuile 2016, Flavor/soft/QCD@CMS

soft particle production

- measure charged-hadron production at I3TeV
 - 170k events, special low PU (0.2-5%) run, B=0T, within pixel detector barrel ($|\eta|$ <2)
- as function of pseudo-rapidity and track multiplicity
- charged hadron density in central region (InI<0.5)
 - $dN_{ch}/d|\eta| = 5.49 \pm 0.01$ (stat) ± 0.17 (syst)
- collision energy dependence as expected

CMS CMS 8 CMS pp √s = 13 TeV inelastic 0.06 pp √s = 13 TeV pp inelastic 7 ALICE 0.05 PHOBOS 6 UA5 0.04 ISR 5 $dN_{ch}/d\eta|_{|\eta|} < 0.5$ PYTHIA8 CUETP8S1 dN_{ch}/dŋ 5 EPOS LHC PYTHIA8 CUETP8M1 0.03 EPOS LHC 3 0.02 2 0.01 HIA8 CUETP8S1 parabolic fit in In(s 0 20 50 10 30 -3 -2 2 з 10^{2} 10^{3} 10⁴ 10¹ number of reconstructed tracks √s [GeV] MC tuning

results allow improvements of perturbative and non-perturbative QCD aspects implemented in hadronic event generators

La Thuile 2016, Flavor/soft/QCD@CMS

nuno.leonardo@cern.ch

PLB 751 (2015) 143

particle correlations

- measure two-particle correlations
 - ▶ L=270 nb⁻¹, B=3.8T, low PU (average:1.3)
 - trigger particle: a hadron, in given pT bin
 - tracks weighted by I/efficiency
- observed structure in $(\Delta \eta, \Delta \Phi)$
 - near side peak around (0,0): jets
 - away side ridge: back to back jets
 - near-side, long-range correlation ridge-like structure observed in high multiplicity events

the ridge (cont'd)

- effect is most pronounced in intermediate p_T range I-2 GeV
- effect absent in low-multiplicity region, with approximate linear increase with multiplicity for N_{track} >40
- no collision energy dependence of the near-side associated yield is observed: I3TeV and 7TeV results compatible (in overlapping PT, Ntrk regions)
- ridge observed in all collision systems (pp, pPb, PbPb) at the LHC, with a strong dependence on the collision system size

arXiv: 1510.03068

 interpretation: partonic flow (small systems, pPb, pp), medium hydrodynamics (heavy ions)

inclusive jet production

- test perturbative QCD and simulations by various MC generators
 - w/ modeling of parton showers, hadronization and multiparticle interactions
 - over several (up to 10) orders of magnitude, and wide p⊤ range (20-2500GeV)
- jet spectra measured at different \sqrt{s} (2.76, 7, 8... and 13)TeV
 - allow ratios, where many uncertainties partially cancel
 - study new kinematic regions of momentum fraction x
- measured double differential (p_T, y) inclusive jet production at I3TeV
 - based on 72pb⁻¹, 114 < p_T < 2,000 GeV, |y|<4.7</p>
- good agreement with predictions, various tunes tested

CMS-PAS-SMP-14-001 CMS-PAS-SMP-15-007

dimuon spectrum

the di-muon signature plot revisited (at 13 TeV)

CMS-DP-2015-055

exclusively reconstructed hadrons

• LHC 50ns run period (2015)

(from last year's edition of La Thuile) nuno.leonardo@cern.ch

La Thuile 2016, Flavor/soft/QCD@CMS

quarkonium: mass spectra at CMS

from Run 1, various states, at various collision energies and collision systems

quarkonium: measurements at CMS from Run 1, production cross sections, ratios, and polarizations

quarkonium production

- cross sections for 7 quarkonia have similar p_T/M shapes (for $p_T/M>3$)
- polarizations for 5 quarkonia tend (similarly) to unpolarized limit
 - Ockham hints: all quarkonia dominantly produced by a single mechanism(?)

- importance of kinematic domain of high transverse momentum
 - perturbative factorization calculations work best at sufficiently high pT
- LHC Runl thorough set of measurements contributed already enormously to a clarification of the field, towards a solution of the "quarkonium puzzle"

prospects, or the next 40 few years

- S-wave states
 - production measurements at the new energy (arriving soon)
 - extend (considerably) the pT reach (high sensitivity regime)

• P-wave states

- cross sections and polarizations
- note: current production measurements of S-wave states contain P-wave feeddown

associated production

- a more complete characterization of production mechanisms benefits from measurements of simultaneous production of quarkonia along with other particles
- further quantify single vs double parton scattering contributions
- examples: Q+Q, Q+Z/W, Q+hadrons/charged particles, etc
- these studies are helpful for connection with ion collisions and rare decay searches
- measurement and search for associated exotic states
- collision systems
 - pp (reference) but also pPb (cold matter effects) and PbPb (hot matter properties)

quarkonium suppression

- the three Y(nS) states are reconstructed for the first time in heavy ion collisions
 - excited states observed to be more suppressed than ground state
- all S-wave quarkonium states are found to be suppressed in PbPb relative to pp
- CMS observes quarkonium sequential melting (less tightly bound states more suppressed in hot QCD medium) -- compatible with quark gluon plasma formation

La Thuile 2016, Flavor/soft/QCD@CMS

nuno.leonardo@cern.ch

B mesons

first measurements of exclusive b-hadrons in pPb collisions

La Thuile 2016, Flavor/soft/QCD@CMS

p+p @ I3TeV

p+Pb @ 5TeV

b hadron production at 13TeV

- measured B differential cross section measured at I3TeV
 - ▶ as a function of pT and rapidity
 - via $B^+ \rightarrow J/\psi K^+$ channel, with 50pb⁻¹ (50ns LHC run period)
- theory comparison
 - good agreement with FONNL predictions
- energy dependence: compared with 7TeV CMS data

spectroscopy

- observed (>5σ) resonance compatible with Y(4140)
 - first evidence at CDF (@ 3.8σ)
- candidate interpretations
 - DsDs*, cscs tetraquark, threshold kinematic effect, hybrid charmonium

- observed new B⁺ decay channel
- measurement of relative branching fraction being prepared

properties: Bs mixing

- neutral B mesons undergo BB oscillations
 - $B_s \rightarrow J/\psi \Phi \Rightarrow$ flavor unspecific $\Rightarrow \Phi_s$
 - $B_s \rightarrow D_s^- \pi^+ \Rightarrow$ flavor specific $\Rightarrow \Delta m_s$

properties: B_s mixing phase (Φs)

B_s mixing measurements (both frequency and phase) appear compatible with SM
 within current theory and experimental precisions -- the latter to be improved in Run2

rare decays: B→K*µµ

- forbidden decay at tree level, rare (BF~10⁻⁶), can occur via loops
- angular analyses yields rich set of observables to compare against SM predictions: differential BF, A_{FB}, A_{CP}, P5', Isospin asymmetry,...
- CMS results consistent with theory prediction, and other experiments
- Next: investigate additional channels and variables

rare decays: $B \rightarrow \mu\mu$, Runl observation

- we've finally observed the long sought, 'golden' decay channel
 - $B_s \rightarrow \mu \mu$ (CMS:4.3 σ ;LHCb: 4.0 σ ; comb.: 6.2 σ)
- and a hint of the decay $B^0 \rightarrow \mu \mu$
 - from combined CMS+LHCb data
 - SM compatibility $I.2\sigma$ (B_s), 2.2σ (B⁰)

Nature 522 (2015) 68, PRL 111 (2013) 101804

La Thuile 2016, Flavor/soft/QCD@CMS

nuno.leonardo@cern.ch

rare decays: $B \rightarrow \mu\mu$, Run2 prospects

• Run I

- observed the B_s channel
- did not find New Physics (yet)
- strong constraints in regions of NP parameter space (eg SUSY w/large tanβ)

• Run 2

- not enough data just yet
- pursue search for B⁰ channel
- measure B_s/B⁰ ratio
- pursue measurement of observables with complementary sensitive to NP
- eg effective lifetime (PRL 109 (2012) 041801)

summary

- CMS has delivered first results at I3TeV based on 2015 data
 - Baseline particle production measurements delivered
 - Used for tuning MC simulations and map energy dependencies
 - Cross section measurements found in agreement with expectation
- Run I has demonstrated CMS' ability to deliver powerful results in the areas of QCD and flavor physics, from production to rare decays
 - exploring high LHC luminosities and cross sections, precision tracking and robust muon identification, across different collision systems
- Physics run is soon resuming
 - will allow higher precision, extended and new measurements and the exploration of rarer phenomena

diMuon trigger & reconstruction

a dedicated dimuon trigger path

Hardware trigger p_T(µ)>3GeV (few kHz)

High level trigger 2011 (2012)

```
central region (|\eta| < 1.8):

p_T(\mu) > 4(3) \text{GeV}, p_T(\mu \mu) > 3.9(4.9) \text{GeV}

forward region (1.8 < |\eta| < 2.2):

p_T(\mu) > 4 \text{GeV}, p_T(\mu \mu) > 7 \text{GeV}, \text{Prob}(\text{VTX}) > 0.5\%
```

$4.8 < M(\mu \ \mu) < 6.0 \text{GeV}$

La Thuile 2016, Flavor/soft/QCD@CMS

• tracks

- good p_T resolution (down to $\approx 1\%$ in barrel)
- tracking efficiency >99% for central muons
- good vertex reconstruction and impact parameter resolution down to $\approx 15 \mu m$

• muon candidates

- match between muon segments and a silicon track, in a large rapidity coverage |η|<2.4
- BDT-based muon identification
 - exploits kinematic quantities, silicon-tracker and combined silicon/muon track fit information
 - fake rates estimated in MC and data (D^*, K_s, Λ)

 $\epsilon(\mu|\pi) \le 0.15\%$, $\epsilon(\mu|K) \le 0.20\%$, $\epsilon(\mu|p) \le 0.10\%$

environment dependence

• extending polarization measurements (as a function of multiplicity)

La Thuile 2016, Flavor/soft/QCD@CMS

$B_s \rightarrow J/\psi \Phi$

La Thuile 2016, Flavor/soft/QCD@CMS

CP violation

physics backgrounds

sensitivity: $B \rightarrow \mu \mu$

- Sensitivity estimated based on expected detector performance by re-scaling results of Run I analysis
- SM prediction for B_d/B_s ratio assumed
- B_d observation (>5 σ) within reach (HL-LHC)
- theory errors on branching fraction (ratio) will remain smaller than experimental sensitivity
- will explore additional observables with complementary sensitivity, e.g. effective lifetime and possibly time-dependent CP asymmetries

[CMS, LHCb]