

INFN

Stato dell'esperimento Belle II a SuperKEKB

Mario Merola (INFN) Riunione di fine anno 2015 8 gennaio 2016

- Physics motivations
- Belle II at SuperKEKB
- Physics program
- Status of the project and schedule
- Napoli activities (calorimeter, physics, computing)

Physics Motivations

Open issues in HEP, related to flavour

- **Baryon asymmetry in cosmology:** new sources of CPV
- Quark and lepton hierarchy (mass and flavour), 19 free parameters in SM: GUTs (SUSY)?
- Dark Matter: hidden dark sector ?
- **Finite neutrino masses:** (charged) lepton flavour violation (tau) ?

Search for new physics (NP)

• Energy frontier: direct production of new particles - limited by beam energy (LHC - ATLAS, CMS)

• Intensity frontier: new particles in virtual loops, deviation from SM expectations (**B factories**, LHCb)

If NP is found in direct searches it is reasonable to expect NP effects in B, D, τ decays

Belle and Babar achievements

4

- Observation of direct and indirect CP violation
- Precise measurement of CKM parameters

Kobayashi, Maskawa nobel prize in 2008

Unique capabilities of B-factories:

- very clean environment
- kinematical constraints
- good detection of neutral hadrons
- hermeticity of the detector

SuperKEKB

5

- Electron-positron collider situated at KEK (Tsukuba, Japan), upgrade of KEKB
- Construction completed in 2015
- $e^+e^- \rightarrow BB$ (4 GeV + 7 GeV) mainly at $\sqrt{s_{cm}}=10.58$ GeV (Y(4S) resonance)

From KEKB to SuperKEKB

6

SuperKEKB

BELLE

7

Peak instantaneous luminosity: ~0.8x10³⁶ cm⁻² s⁻¹

Belle II overall integrated luminosity: ~50 ab⁻¹ corresponding to 55 × 10⁹ BB pairs (BaBar + Belle ~ 1.5 ab⁻¹)

Higher beam background (10-20 x): high detector occupancy, pile-up in calorimeter, radiation damage

h h Red: e-, Blue: e+ A: primary loss positio h Touschek scattering, Bhabha, 2γ

SuperKEKB

10um

8

Peak instantaneous luminosity: $\sim 0.8 \times 10^{36}$ cm⁻² s⁻¹

Belle II overall integrated luminosity: $\sim 50 \text{ ab}^{-1}$ corresponding to 55 \times 10⁹ BB pairs (BaBar + Belle $\sim 1.5 \text{ ab}^{-1}$)

Higher beam background (10-20 x): high detector occupancy, pile-up in calorimeter, radiation damage

Physics process	Cross section (nb)	Rate (Hz)
$\Upsilon(4S) \to B\bar{B}$	1.2	960
$e^+e^- \rightarrow \text{continuum}$	2.8	2200
$\mu^+\mu^-$	0.8	640
$\tau^+\tau^-$	0.8	640
Bhabha ($\theta_{\text{lab}} \ge 17^{\circ}$)	44	350^{a}
$\gamma\gamma~(\theta_{\rm lab} \ge 17^\circ)$	2.4	19 ^a
2γ processes b	~ 80	~ 15000
Total	~ 130	~ 20000

^a The rate is pre-scaled by a factor of 1/100.

^b
$$\theta_{\text{lab}} \ge 17^{\circ}, p_t \ge 0.1 \text{GeV}/c$$

From Belle to Belle II

Belle II upgrade:

- **Extended VD region** (added pixel detector)
- Extended Drift Chamber region
- **New ECL electronics** (waveform sampling and fitting)
- **Better hermeticity** (additional PID detector in the forward endcap)
- **High efficiency KLM detector** (some RPCs layers substituted with scintillators)

From Belle to Belle II

Unique capabilities of e⁺e⁻ B factories - Belle II

- 11
 - 1. Beam energy constraint and adjusted for different resonances $\Upsilon(nS)$
 - 2. **Clean experimental environment**, low track multiplicity and detector occupancy (w.r.t hadron collider)
 - high B, D, K, tau reconstruction efficiency
 - open trigger ~99% efficient
 - 3. Full reconstruction of one B (B_{tag}) constraints the 4momentum of the other (B_{sig})
 - helpful in reconstruction of channels with missing energy
 - opposite side B tagging efficiency: $\sim 30\%$ ($\sim 2\%$ @LHCb)
 - 4. Excellent EM calorimetry performances
 - high reconstruction efficiency of neutral final states

Physics program (1)

- 12
- CPV in B decays, CKM angles $(B \rightarrow J/\psi K^0, K^0 \pi^0 \gamma, K \pi)$
- (Semi)leptonic B decays, CKM sides $(B \rightarrow D^{(*)}l\nu, \pi l\nu, \tau \nu, \mu \nu)$

Physics program (2)

Belle II

50 ab-1

0.30

1°

1.5°

1.2%

LHCb Upgrade

50 fb⁻¹

0.3°

1°

Theory

v. small.

~1-2°

negl.

LHCb

Run-2

0.6°

4°

Global Fit

CKMfitter

0.9°

2.1°

3.80

2.4%

13

V_{cb} exclusive	2.2%			1.4%
 V ub inclusive	7%	4.5%	7.2%	3.0%
 V ub exclusive	8%			2.4%
Vub leptonic	14%			3.0%

see backup for details on Belle2-LHCb comparison

BaBar

Programma di fisica include anche:

- Rare B decays $(B \rightarrow K^{(*)}vv, X_s\gamma, X_sll, \gamma\gamma)$
- Charm physics $(D \rightarrow lv, mixing, CPV)$
- LFV tau decays $(\tau \rightarrow 31, 1\gamma)$
- Dark Sector, Spectroscopy

 φ_1 : ccs

 φ_2 : uud

*φ*₃: DK

Vcb inclusive 1.7%

Belle

0.9°

4º (WA)

14°

Experiment	Theory
No result	
Moderate precision	Moderate precision
Precise	Clean / LQCD
Very Precise	Clean

Belle II status and schedule

Belle II schedule: installation and commissioning

BEAST phase 1 (2016): beam, no collisions, cosmics
BEAST phase 2 (2017-2018): collisions, complete
Belle II detector except for Vertex Detector
Full physics (end 2018-2024): full Belle II detector

BEAST (Beam Exorcism for A **ST**able experiment): commissioning detector, aimed at studying beam induced backgrounds near the IP

R.Giordano

BEAST commissioning detector

Among the technical challenges at Belle2, there are beam backgrounds

- In Belle/KEKB, unexpected backgrounds burnt a hole in the beam pipe and damaged inner detectors
- Especially dangerous at SuperKEKB:
 - Temporary damage or faults in electronics
 - Obscure physics processes
 - Fake interesting physics signals
 - Rejecting fake signals also lowers efficiency
- This is where BEAST comes in...

Belle II

BEAST Goals

- 17
- Instrument SuperKEKB before
 Belle II is rolled in
- Measure beam backgrounds where BelleII will operate to:
 - Tune simulations in
 - Ensure radiation level is safe for detectors
 - Identify and shield background "hot spots"
 - Test systems that measure radiation levels for feedback to SuperKEKB

BEAST fiberglass frame supporting background detectors (PIN diodes, TPCs, Diamonds, He3 tubes, BGO, Calorimeter crystals)

R.Giordano

BEAST phase I & II

18

Hardware Installation complete

The suite of BEAST detectors is finalized and detailed design is in progress

BEAST Phase 1: Feb 2016
•Variety of subsystems on fiberglass
support structure
•No Belle II DAQ, only BEAST DAQ

BEAST Phase 2: ~May 2017

- •Belle II rolled in.
- •VXD BEAST Assembly
- •BEAST detectors in dock space
- •BEAST DAQ & Belle DAQ

Tsukuba hall

19

End october 2015

End december 2015

Belle II detector

IR

Belle II collaboration

20

Belle II: ~650 collaborators, 99 institutions, 23 regions/countries tra cui 9 sezioni infn, ~36 FTE (67 FIS+TEC) nel 2016 rispetto a ~25 FTE (49 FIS+TEC) nel 2014 08/01/16

Belle II gruppo di Napoli

21

Nome	Qualifica	FTE (%)	
Aloisio	Prof. Ord.	20	Duin air ali attimità
De Nardo (Responsabile)	Prof. Ass.	90 (include 10 ReCaS)	Principali attivita:
Giordano	Assegnista	70	Calorimetro elettromagnetico
Merola	Assegnista	90	(ECL)
Ordine	Pr. Tecnologo	30	Software e fisica
Pardi	Tecnologo	65	
Russo	Prof. Ord.	65 (include 10 ReCaS)	Computing
Sciacca	Prof. Emerito	0	

Responsabilità ufficiali:

- **G. De Nardo:** identificazione elettroni, convenership gruppo di analisi sui decadimenti del B leptonici, semileptonici e con missing energy, responsabile italiano fisica e software
- **S. Pardi:** networking per l'Europa

Attività gruppo di Napoli sul calorimetro elettromagnetico

(Aloisio, Cavaliere, De Nardo, Giordano, Merola)

	Day I	Day 2
Programma Belle II	Riutilizzo del calorimetro di Belle CsI(TI) + completo rifacimento dell'elettronica di lettura Sviluppo del software di ricostruzione e PID	Early upgrade degli endcaps per le alte dosi di radiazione. Nuovi cristalli di Csl puro , sensori ed elettronica di lettura. Csl puro già scelto. Opzione sensori ancora aperta
Commitments Napoli	Software di identificazione elettroni e studi di fisica associati (con LNF, RM3) Aiuto nella sostituzione elettronica Barrel: primavera 2014 Endacap: fine 2014	 - R&D su lettura Csl puro con Large Area APDs (con PG,LNF,RM3) - Sviluppo sistema di controllo e slow daq (con RM3)

dalla riunione GRI fine 2014

Nelle prossime slides:

Þ

- Opzione CsI puro vs CsI(Tl)
- T/Rh monitoring barrel e endcap
- T/Rh monitoring BEAST

23

Cristalli di CsI puro vs CsI(Tl)

R&D opzione CsI puro: test beam e presa dati con cosmici, test di radiation hardness, caratterizzazione delle colle, studi su wavelength shifters.

CsI puro più resistente alle radiazioni, CsI(Tl) risultato essere più radiation hard del previsto

Confronto CsI puro vs CsI(Tl): risoluzione in energia

24

Performance del CsI puro marginalmente migliore

Pile-up: accumulation of hits in the crystal due to photons from beam background

25

Opzione CsI puro: conclusioni (preliminari)

- CsI puro ha maggiore resistenza alle radiazioni del CsI(Tl), ma deterioramento del CsI(Tl) minore del previsto
- **Risoluzione in energia** per il CsI puro **un po' peggiore** di quella del CsI(Tl) in **assenza di pile-up**
- In condizioni di **pile-up** la risoluzione in energia del CsI è solo **marginalmente migliore** del CsI(Tl)
- Fondamentale è valutare l'impatto delle diverse opzioni sulla fisica anche in condizioni più realistiche di pile-up (studiate nelle prime fasi di BEAST)

Sistema di controllo umiditàtemperatura ECL

Temperature and humidity effect on the crystals light yield

1026

26

Fig. 2. The changes of pulse height spectrum as a function of time for CsI(Na) sample exposed to 75% relative humidity. An $^{241}\rm{Am}$ is used as an ionization source.

A.Aloisio

Fig. 3. The changes of the pulse height as a function of humidity and time fo CsI(Na) crystals at room temperature.

Fig. 4. Relative light intensities from CsI(Tl) measured for cosmic muons, 5 MeV γ -rays from Pu-C and 1.25 MeV γ -rays from ⁶⁰Co. Data points are normalized to 0.98 at 16.5 °C. A few error bars are shown to indicate the error in finding the peak position in the pulse height spectrum. The results from refs. [4,5] are read from the data points in the figures and shown for comparison after conversion to smooth curves.

A.Aloisio

uSOP (Service Oriented Platform)

27

- Single Board Computer for embedded applications
- 3U Eurocard form factor, stand alone
- Running Linux OS (Debian)
- Designed as a platform for Belle2 ECL slow-controls

			AM3	335x P	rocess	or 🦊		
ARM [®] Cortex ^{TM,} up to 1* GHz 32K/32K L1 w 256K L2 w/1 64K RAM	A8 Pov S0 SED 20 M ECC		ARM [®] Cortex TM -A8 up to 1* GHz 32K/32K L1 w/ SED 256K L2 w/ ECC 64K RAM		phics verVR X™) Gfx A/Trl/s	24-bi Touch Secur w/ cry acc. 64K share	Displa t LCD Ctr Screen C ty P to E P d Eti a	V I (WXGA) trl (TSC)** RU-ICSS therCAT [®] ROFINET [®] hernet/IP [™] nd more
L3/L4 In			tercon Par	nect allel		-		
UART ×6 SPI ×2	EDI Time	EDMA Timers ×8		C/SD/ 0 ×3	USB 2.0 OTG + PHY ×2			
I ² C ×3 McASP ×2 (4 ch)	WI R1 eHRPV	WDT RTC		910	EMA0 10/1 w/ 15	2 port 00/1G 88 and		
CAN ×2 (2.0B)	eQEP ×3 eCAP ×3 JTAG/ETB			Memory LPDDR1/	(MII, RN / Interfac DDR2/DD	III, RGMII) ce R3		
	12-bit	SAR**		NAN (16	D/NOR b ECC)			

08/01/16

T/Rh readout

TILIC

CABLE ADAPTER

VER 1.0

28

Cable Adapter (passive):

- Selects grounding scheme
- Filters the power to the VAISALA Rh probe
- Sets 2, 3 or 4 wire (Kelvin) read-out

A.Aloisio

In each sector:

- 3 thermistors
- 1 VAISALA Rh probe

08/01/16

Aggregation scheme

uSOP monitoring ECL Forward

30

T-Rh Controller

Sectors 7F and 8F

uSOP Rev. C

Cable harness to sectors

Cable Adapters

uSOP in the Fuji Hall – CSI booth (Jun. 2015)

Live Display

31

08/01/16

INFN NA contribution to BEAST

Primary detector groups are Belle II collaborators from: U. Hawaii, Wayne State U. (USA), U. Victoria (Canada), INFN (Italy), U. Trieste (Italy), National Taiwan U. (Taiwan), KEK (Japan), MPP Munich (Germany)

- INFN NA is involved in the calorimeter crystals
- BEAST includes 6 boxes with 3 scintillating crystals each
- Light Yield depends on temperature (T) and relative humidity (RH)
- Dedicated uSOP system monitors
 T and RH in each box

R.Giordano

Team

CANADA

- U. of Victoria
 - A. Beaulieu
- ITALY
 - INFN LNF Frascati
 - R.de Sangro, A. Russo (Tech)
 - U. of Naples & INFN Naples
 - R. Giordano
 - U. of Perugia & INFN Perugia
 - A. Rossi, G. Scolieri (Tech)
 - INFN Roma 3
 - P. Branchini

2

probe

Sensor installation

wiring

34

Box hosting crystals

Close-u

- In each box, one thermistor per crystal (Lyso, pure CsI, CsI(Tl)) and a humidity probe
- Cable adapter PCB on the box side
- Sockets/plugs compatible with Belle2 ECL
- Each box is read via a 16-wire shielded cable routed to DAQ room
- 3-wire scheme for thermistor readout

R.Giordano

35

Each uSOP outputs EPICS PVs over the BEAST network for relative humidity, crystal temperatures and corresponding dew points

• Box is sealed and includes humidity absorber, RH varies mostly due to variation of temperature

R.Giordano

Irradiation of FPGA at BEAST

On the back of the strut

IR forward

- Activity in the framework of SIR project "ROAL"
- FPGA board installed on the BEAST structure (behind a TPC)
- Designed for radiation effect studies, only FPGA (Kintex-7 325T) and passives, no active components
- Readout by uSOP for measuring bit upsets induced by radiation (JTAG over 40m CAT7 cables)
- External power supplies (4-wire scheme)
- uSOP+ADC(LTC2499) sense voltages at FPGA

Computing e risorse per Belle II

Impiego risorse BelleII e performance di Napoli

Risorse di Napoli per BelleII attualmente in funzione

- 39
- Risorse Utilizzate: ReCaS (700 core), SCoPE (300 core), Tier 2 (20 core) + 500 core presso la sede di Cosenza gestite dal CE di Napoli.
- Circa 650.000 jobs eseguiti durante l'ultima campagna Monte Carlo (MC5) circa il 7.1% dell'intera produzione.
- □ **300TB Storage** messo a disposizione utilizzato al 45%
- New: da dicembre in pre-production ulteriori 1244 core sul cluster ReCaS-Unina (Boccia, Bottalico, Carracciuolo, Doria, Pardi, Russo, Tarasio)

Networking: stima delle risorse di rete

Attività:

Stima delle risorse di rete che verranno utilizzate dalla collaborazione Belle II nei prossimi anni ed individuazione dei flussi di dati previsti

Data Challenge per il test dello stato attuale della rete

Attività svolta da S. Pardi (coordinatore nel network in Europa per Belle II)

Status:

- □ **Stima numerica effettuata fino al 2018** e individuazione di tutti i flussi di data transfer fino al 2024 sulla base dell'attuale computing model.
- Completata la fase II del data challenge con risultati per Napoli in linea con le previsioni
- Da completare: stima numerica completa fino al 2024 e stima del traffico dovuto alla user analysis (non è ancora definito il modello di analisi)

08/01/16

Risultati dei primi test di data transfer tra PNNL, KEK e Napoli (1 TB di dati trasferiti via gridftp)

	2018	2024 (old approx)	2015 Data Challenge Results	Comment
PNNL → NAPOLI	<3Gbps	4 Gbps average	3 Gbps	Goal Achieved
KEK → NAPOLI	1 Gbps	5 Gbps	3 Gbps	Goal Achieved

42

Attività:

S. Pardi

Napoli ha la responsabilità della gestione delle configurazioni di tutti gli Storage di Belle II (S. Pardi)

Status:

• E' stata completata la **ricognizione, configurazione e certificazione di tutti gli storage della collaborazione** interagendo con i site manager di tutti i paesi (23 storage in totale circa 5 mesi di attività)

- E' stato definito un insieme di storage affidabili (tra cui quello di Napoli) .
- E' stata avviata un'attività di sperimentazione per l'utilizzo del protocollo http per l'accesso ai dati coordinata da Napoli che prevede i seguenti punti:
 - Verificare la compatibilità del software di belle II con il protocollo http.
 - Selezionare un set di Storage Element pilota configurati con supporto http
 - Creare una data-federation via http.

Attività software e analisi

- Identificazione elettroni
- Preparazione di analisi dei decadimenti
 - $B \to \tau \nu \; e \; B \to K^{(*)} \nu \nu$

Attività software - identificazione di elettroni

44

G. De Nardo (responsabile), M. Merola

Subdetectors capable of PID

e-ID currently uses E/p from ECL and dE/dx from SVD+CDC

Next steps: ottimizzazione variabili per la e-ID, impatto sui canali di fisica

Attività analisi

Ongoing Studies Leptonic, semileptonic and with missing energy B decays working group

		Leptonic		
Thomas Keck	Karlsruhe	PhD	B -> tau nu with FEI	
Felix Metzner	Karlsruhe	MSc	B -> I nu gamma (hadronic + semileptonic tag) ‡	_
Mario Merola, Guglielmo De Nardo	Napoli	Staff	B -> I nu tagged	$B \rightarrow \tau \nu$
		b -> c l nu		-
Lucien Cremaldi, David Sanders	Mississippi	Staff	B -> D* mu/e nu	
		b -> c tau nu		
Abner Soffer	Nagoya Visitor	Staff & students	Vertexing to improve B -> D(*) tau nu and B -> mu nu	
Karol Adamczyk	Krakow	PhD	B -> D* tau nu polarisation	
Himansu Sahoo, Don Summers	Mississippi	Staff	B -> D(*) tau nu	
		b -> u l nu		
Alexander Ermakov	Melbourne	PhD	B -> Xu I nu (inclusive)	
Matic Lubej, Anze Zupanc	Ljubljana	Staff and students	B -> pi I nu and Bs -> K I nu	
		Missing Energy		
Elisa Manoni	Perugia	Staff	B -> K(*) nu nu tagged	$B \rightarrow K^{(*)} \nu \nu$
Johannes Grygier	Karlsruhe	PhD	B -> K(*) nu nu tagged	
James Kahn	LMU	PhD	B -> K(*) nu nu tagged	
Sasha Glazov	DESY	Staff and students	B -> K(*) nu nu tagged	
Gianluca Inguglia	DESY	Staff	B -> nu nu (gamma)	

B leptonic decays $(B \rightarrow lv)$

46

- Helicity suppressed $BR_{SM} \left(B \rightarrow \ell \ \nu \right) = \frac{G_F^2 m_B \tau_B}{8\pi} f_B^2 |V_{ub}|^2 \left(m_\ell^2 \left[1 - \frac{m_\ell^2}{m_B^2} \right]^2 \right)$ $\tau: \mu: e \rightarrow 1: 10^{-3}: 10^{-7}$
- The SM predicts a branching ratio of $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = (0.75^{+0.10}_{-0.05}) \times 10^{-4}$
- Higgs doublet models predict interference with SM decay with a modification of the branching ratio

Recent results on $B \rightarrow \tau v$

- 47
- First evidence at Belle (2006) and Babar (2012 Napoli group)
- Most recent measurement (Belle 2015):
 - use of multivariate techniques (neural network) to reconstruct the tag side
 - the signal side is reconstructed in four modes: $\tau \rightarrow \mu \nu \nu$, $e\nu\nu$, $\pi\nu$, $\rho\nu$

- the signal is extracted through a two-dimensional maximum likelihood fit to the E_{ECL} and p^*_{sig} distributions

• E_{ECL} is the sum of the energies of clusters in the ECL not associated to reconstructed B mesons

• p^{*}_{sig} is the momentum of the signal side particle in the CM

 $\mathcal{B} = [0.91 \pm 0.19 (\text{stat.}) \pm 0.11 (\text{syst.})] \times 10^{-4}$ (evidence at ~4.6 σ level)

http://arxiv.org/abs/1503.05613v2

08/01/16

I N F N

 Developed by Thomas Keck, it's of the Full extension an Reconstruction used in Belle, and uses a multivariate technique to reconstruct the B-tag side through lots of decay modes in an Y(4S)

• Hierarchical approach: first train multivariate classifiers (MVC) on FSP, then reconstruct intermediate particles and build new dedicated MVC. For each candidate a "signal probability" is defined, which represents the "goodness" of its reconstruction.

Full Event Interpretation (FEI)

decay.

 $B^0 B^+$

Full Event Interpretation (FEI) performances

Total reconstruction efficiency compared with Belle I

Belle II

${ m B}^+$ (hadronic)	0.78 %	B^+ (semileptonic)	1.05 %
${ m B}^0$ (hadronic)	0.59 %	${ m B}^0$ (semileptonic)	1.17 %

Belle I

${ m B}^+$ (hadronic)	0.39 %
${ m B}^0$ (hadronic)	0.28 %

- B^+ (semileptonic) 0.80 %
- ${
 m B}^0$ (semileptonic) 0.86 %

Analysis setup

50

M. Merola, G. De Nardo, in collaborazione con Perugia

Massa del B ricostruita con il constraint dell'energia dei fasci nel centro di massa

First event pre-selection established and sensible variables look reasonable Future plans:

- optimize event selection and add other τ decay modes (e, ρ,π)
- set up an analysis strategy for $B \rightarrow \tau \nu / K^* \nu \nu$ (multivariate techniques ?)
- FEI: optimization of input variables, training with beam background

08/01/16

FONDI ESTREMI safety factor 3x E/µsec (ring 7 sect 8)

 Anche nel limite MC11 con E/hit x 3 il Csl(Tl) appare avere performance migliori

Belle II vs Belle

53

Physics prospects

		-	-									
	Observables	Belle or LHCb*	В	elle II	L	HCb		Observables	Belle or LHCb [*]	Be	lle II	LHCb
		(2014)	5 ab^-	¹ 50 ab ⁻	⁻¹ 8 fb ⁻¹ (20	$018) 50 \text{ fb}^{-1}$			(2014)	5 ab^{-1}	50 ab^-	1 2018 50 fb ⁻¹
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (0.9^\circ)$	0.4°	0.3°	0.6°	0.3°	Charm Rare	$\mathcal{B}(D_s \to \mu u)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$	2.9%	0.9%	
	α [°]	85 ± 4 (Belle+BaBar)	2	1				$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \cdot 10^{-3} (1 \pm 3.7\% \pm 5.4\%)$	3.5%	2.3%	
	$\gamma \ [^{\circ}] \ (B \rightarrow D^{(*)}K^{(*)})$	68 ± 14	6	1.5	4	1		$\mathcal{B}(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	30%	25%	
	$2\beta_s(B_s \to J/\psi\phi)$ [rad]	$0.07\pm 0.09\pm 0.01^*$			0.025	0.009	Charm CP	$A_{CP}(D^0 \to K^+ K^-)$ [10 ⁻⁴]	-32 + 21 + 9	11	6	
Gluonic penguins	$S(B o \phi K^0)$	$0.90^{+0.09}_{-0.19}$	0.053	0.018	0.2	0.04		$\Delta A_{CP}(D^0 \rightarrow K^+K^-)$ [10 ⁻³]	3.4*		-	0.5 0.1
	$S(B ightarrow \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.028	0.011				$A_{\Gamma} [10^{-2}]$	0.22	0.1	0.03	0.02 0.005
	$S(B \rightarrow K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	0.100	0.033				$A_{CP}(D^0 \to \pi^0 \pi^0) \ [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$	0.29	0.09	
	$\beta_s^{\text{eff}}(B_s \to \phi \phi) \text{ [rad]}$	$-0.17\pm0.15\pm0.03^{*}$			0.12	0.03		$A_{CP}(D^0 \to K_c^0 \pi^0) \ [10^{-2}]$	$-0.21 \pm 0.16 \pm 0.09$	0.08	0.03	
	$\beta_s^{\text{eff}}(B_s \to K^{*0} \bar{K}^{*0})$ [rad]	-			0.13	0.03	CI 11.	$(D_{1}^{0} + C_{2}^{0} + C_{2}^{0}) = (10-2)$	0.50 + 0.10 + 0.07	0.14	0.11	
Direct CP in hadronic Decays	s $\mathcal{A}(B \rightarrow K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$	0.07	0.04			Charm Mixing	$g \ x(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.50 \pm 0.19 \pm 0.13$ 0.20 + 0.15 + 0.05	0.14	0.11	
UT sides	$ V_{cb} $ incl.	$41.6\cdot 10^{-3}(1\pm 2.4\%)$	1.2%					$y(D^- \rightarrow K_S^- \pi^+ \pi^-) [10^-]$	$0.30 \pm 0.15 \pm 0.08$	0.08	0.05	
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{ex.} \pm 2.7\%_{th.})$) 1.8%	1.4%				$ q/p (D^- \to K_S^- \pi^+ \pi^-)$	$0.90 \pm 0.15 \pm 0.06$	0.10 6	0.07	
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{ex.} \pm 2.5\%_{th.})$) 3.4%	3.0%				$\varphi(D^{-} \to K_{\tilde{S}}^{-} \pi^{+} \pi^{-}) [^{-}]$	$-0 \pm 11 \pm \frac{5}{5}$	0	4	
	$\left V_{ub}\right $ excl. (had. tag.)	$3.52\cdot 10^{-3}(1\pm 10.8\%)$	4.7%	2.4%			Tau	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7	
Leptonic and Semi-tauonic	$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$96(1\pm 26\%)$	10%	5%				$\tau \to e \gamma \ [10^{-9}]$	< 120	< 39	< 12	
	$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%				$\tau \to \mu \mu \mu ~[10^{-9}]$	< 21.0	< 3.0	< 0.3	
	$R(B \to D \tau \nu)$ [Had. tag]	$0.440(1\pm 16.5\%)^\dagger$	5.6%	3.4%								
	$R(B\to D^*\!\tau\nu)^\dagger$ [Had. tag	g] $0.332(1 \pm 9.0\%)^{\dagger}$	3.2%	2.1%				· [• • • • • • • • • • • • • • • • • • • •			
Radiative	$\mathcal{B}(B \to X_s \gamma)$	$3.45\cdot 10^{-4} (1\pm 4.3\%\pm 11.6\%)$	7%	6%			<u>></u>	² 10 ⁻⁴	-			
	$A_{CP}(B \rightarrow X_{s,d}\gamma) \ [10^{-2}]$	$2.2\pm4.0\pm0.8$	1	0.5			~	Belle	Had Tag			
	$S(B ightarrow K^0_S \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035			1	5 ab-	1			
	$2\beta_s^{\text{eff}}(B_s \to \phi \gamma)$	-			0.13	0.03	8	SM SM	₋ 1			
	$S(B ightarrow ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07			Ш	10 ⁻⁵ -				
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	0.3	-				E T	_			
Electroweak penguins	$\mathcal{B}(B \rightarrow K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40	< 15	30%				F				
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55	< 21	30%								
	$C_7/C_9~(B o X_s \ell \ell)$	$\sim 20\%$	10%	5%				10⁵				
	$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	-	< 2	-				E II_				
	$\mathcal{B}(B_s \to \mu \mu) \ [10^{-9}]$	$2.9^{+1.1*}_{-1.0}$			0.5	0.2		E 🕂 💻				

 10^{7}

Physics highlights

$B \rightarrow K^{(*)}vv$: theoretical motivations

• SM predictions [JHEP 02 184,2015]:

 form factor error parametric error (IV_{cb}l-dominated)

 $R_{K(*)} = B \rightarrow K^{(*)}vv$ BR normalized to SM expectations [JHEP 02 184,2015]

- NP effects:
 - non standard Z-couplings
 - new sources of missing energy

$B \rightarrow K^{(*)}vv$: experimental search (I)

- Recoil method: ٠
 - reconstruct semileptonic or hadronic B decays on one side
 - look for K/K* + missing energy on the rest of the event (and \sim nothing else)
- Suppress qq and combinatoric BB background by using kinematic and event shape variables
- Crucial ingredients: ٠
 - detector hermeticity and performing tracking: veto extra-tracks, low $(\rightarrow 0)$ extra-energy in the calorimeter
 - particle identification: suppression of events with mis-identified K/π on both Reco and Signal sides
- Signal extraction: cut or fit to E_{FCI} ٠ distribution (extra-energy in the calorimeter)

[Belle, PRL 99 221802, 2007]

E. Manoni

- Most recent experimental results:
 - Belle search for $B \rightarrow h^{(*)}vv$; 0.711 ab⁻¹ [PRD RC 87, 111103(2013)]

Mode	Upper limit
$B^+ \rightarrow K^+ \nu \overline{\nu}$	< 5.5 × 10 ⁻⁵
$B^0 \rightarrow K^0_s v \bar{v}$	$< 9.7 \times 10^{-5}$
$B^+ \rightarrow K^{*+} \nu \overline{\nu}$	$< 4.0 \times 10^{-5}$
$B^0 \rightarrow K^{*0} \gamma \overline{\gamma}$	$< 5.5 \times 10^{-5}$

- BaBar search for $B \rightarrow K^{(*)}vv$; 0.429 ab⁻¹ [PRD 87, 112005(2013)]
 - $\begin{array}{l} \mathsf{BF}(B^+ \to K^+ \nu \bar{\nu}) < 1.6 \times 10^{-5} \\ \mathsf{BF}(B^0 \to K^0 \nu \bar{\nu}) < 4.9 \times 10^{-5} \\ \mathsf{BF}(B \to K \nu \bar{\nu}) < 1.7 \times 10^{-5} \\ \mathsf{BF}(B^+ \to K^{*+} \nu \bar{\nu}) < 6.4 \times 10^{-5} \\ \mathsf{BF}(B^0 \to K^{*0} \nu \bar{\nu}) < 12.0 \times 10^{-5} \\ \mathsf{BF}(B \to K^* \nu \bar{\nu}) < 7.6 \times 10^{-5} \end{array}$

~ 1 order of magnitude far from SM expectation

B→K(*)vv: perspectives at Belle-II 🐠

- First extrapolation in BELLE2-NOTE-0021, assuming:
 - similar background to Belle
 - hadronic and semileptonic tag
 - SM prediction [JHEP 04 (2009) 022]:
 - BR(B⁻→K⁻νν)= 3.6 × 10⁻⁶
 - BR(B⁰→K^{*0}vv)= 0.13 × 10⁻⁶

0.711 ab⁻¹ [Belle measurement] $< 5.5 \times 10^{-5}$ 5 ab^{-1} $< 2.1 \times 10^{-5}$ $< 0.7 \times 10^{-5}$ 50 ab⁻¹ $\mathcal{B}(B^0 \to K^0_{s} \nu \bar{\nu}) = (2.2 \pm 0.8) \times 10^{-6}$ 0.711 ab⁻¹ [Belle measurement] $< 9.7 \times 10^{-5}$ 5 ab^{-1} $< 3.7 \times 10^{-5}$ 50 ab^{-1} $< 1.2 \times 10^{-5}$ $\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu}) = (6.8 \pm 2.0) \times 10^{-6}$ 0.711 ab-1 [Belle measurement] $< 5.5 \times 10^{-5}$ 5 ab^{-1} $< 2.1 \times 10^{-5}$ 50 ab^{-1} $< 0.7 \times 10^{-5}$

 $B(B^+ \rightarrow K^+ \nu \bar{\nu}) = (4.4 \pm 1.5) \times 10^{-6}$

- What's (will be) new:
 - theo side: higher SM expectation for BR($B^0 \rightarrow K^{*0}vv$) (~ 9 x 10⁻⁶)
 - exp side: sensitivity study performed with Belle-II full simulation, more reliable estimates of
 - background contamination: e.g. higher pile-up reduced \rightarrow discriminant power of E_{ECL} (study and optimization of ECL performances ongoing)
 - signal efficiency: lower boost → higher hermeticity (lower bkg, higher eff.), improved tracking and particle identification

Semileptonic golden modes

• **B**→**D**^(*)τν

- Measurement of $R^{(*)} =$ BR $(B \rightarrow D^{(*)}\tau v) / BR(B \rightarrow D^{(*)}lv)$
- **BaBar**: 3.5 σ far from SM
- LHCb: consistent with SM
- Belle: consistent with both LHCb and BaBar

• $\mathbf{B} \rightarrow \mathbf{X}_{\mathbf{u}} \mathbf{l} \mathbf{v}$

- Tension between inclusive and exclusive measurements of $|V_{ub}|$

New sources of CP violation in $b \rightarrow s$

d

Belle II projections

 $\delta S(b \rightarrow s) \sim 0.01$ @ 50 ab⁻¹

62

Lepton Flavour Violation in τ decays

- LFV is a theoretically clean null test of the SM: BR~10⁻²⁵
- NP may induce LFV

	reference	$\tau \rightarrow \mu \gamma$	τ→μμμ
SM + heavy Maj v_R	PRD 66(2002)034008	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	PLB 547(2002)252	10 ⁻⁹	10 ⁻⁸
SUSY SO(10)	PRD 68(2003)033012	10 ⁻⁸	10 ⁻¹⁰
mSUGRA+seesaw	PRD 66(2002)115013	10 ⁻⁷	10 ⁻⁹
SUSY Higgs	PLB 566(2003)217	10 -10	10 ⁻⁷

- τ decays studied at
 B-factories (hadron machines not competitive)
- 2 orders of magnitude improvement

The 5th KEK Flavor Factory Workshop / The 3rd Belle II Theory Interface Platform Workshop

https://kds.kek.jp/indico/event/19103/

B2TIP: Will include some discussions of physics possibilities during BEAST Phase II

Cristalli di CsI puro: risoluzione in energia

64

The stochastic term **b** in Csl(Tl) is negligible w.r.t. the shower shape fluctuation c. Viceversa in pure Csl.

In the following c and d (calibration term) are assumed equal for CsI(TI)) and pure CsI.

It is not clear however if one can keep the APD readout stability at the same level of PIN diodes and therefore 1.34% is adequate for APD as well

Sensors

- Same sensors as Belle2 ECL (and same readout scheme)
- 0.3°C uncertainty on temperature
- 3% uncertainty on relative humidity

Thermistor Semitec AT-2 10 kohm Resistance tolerance

RH probe Vaisala HMP60

Performance

RELATIVE HUMIDITY	
Measurement range	0 100 %RH
Typical accuracy	
temperature range	0 +40 °C
0 90 %RH	±3 %RH
90 100 %RH	±5 %RH
temperature range	-40 0 °C, +40 +60 °C
0 90 %RH	±5 %RH
90 100 %RH	±7 %RH
Humidity sensor	Vaisala INTERCAP®

In the DAQ Room

- Minicrate with 3 uSOP systems
- 2 uSOPs read 6 boxes
- 1 uSOP for FPGA readout
- Each uSOP has a dedicated ethernet connection for remote poweron/off

BEAST Rack

T/RH aggregation scheme

Impiego risorse BelleII e performance di Napoli

Need raw data format from all the detector (DST format)

08/01/2015/12/21

Networking: risultati data challenge 2015 per Napoli

51 S. Pardi Asia: KEK2 - kek2-se01.cc.kek.jp FTS3 configuration (server deployed at PNNL): US: PNNL - se.hep.pnnl.gov VFTS3 using 16/10 TCP streams EU: KIT - gridka-dcache.fzk.de no explicit checksum checks NAPOLI - belle-dpm-01.na.infn.it Auto-tuner disabled DESY - dcache-se-desy.desy.de concurrent file transfers at 5 - 100 SIGNET - dcache.ijs.si (in steps of 5) CNAF - storm-feversion : 3.2.32 archive.cr.cnaf.infn.it

Site Preparation and data used

▶ ~100 files with each file ~10 GB. This implies ~1 TB of data.

Each SE will temporarily take 2 x 1 TB of disk space.

Each SE has "*-DATA-SE endpoint" + "belle/DC/in and "*-TMP-SE endpoint" + "belle/DC/out"

	2018	2024 (old aprox)	2015 Data Challenge Results	Comment
PNNL → NAPOLI	<3Gbps	4 Gbps average	3 Gbps	Goal Achieved
KEK → NAPOLI	1 Gbps *	5 Gbps	3 Gbps	Goal Achieved

Full Event Interpretation (FEI)

- 71
- Input variables used to train the multivariate classifiers:
 - PID, tracks momenta, impact parameters (charged FS particles);
 - cluster info, energy and direction (photons);
 - invariant mass, angle between photons, energy and direction (π^0) ;
 - released energy, invariant mass, daughter momenta and vertex quality ($D^{(*)}_{(s)}$, J/ψ);
 - the same as previous step plus vertex position, ΔE (B);
 - additionally, for each particle the classifier output of the daughters are also used as discriminating variables.
- Generic training performed on $87*10^6 B^+B^-/B^0B^0$ without beam bkg ~ 80/fb
- The result analysis independent is centralized so that all the analyzers can use the same training.