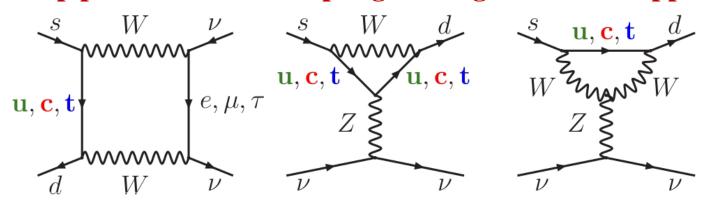

Stato e prospettive dell'esperimento NA62

Riunione Gruppo 1, Napoli 08/01/2016

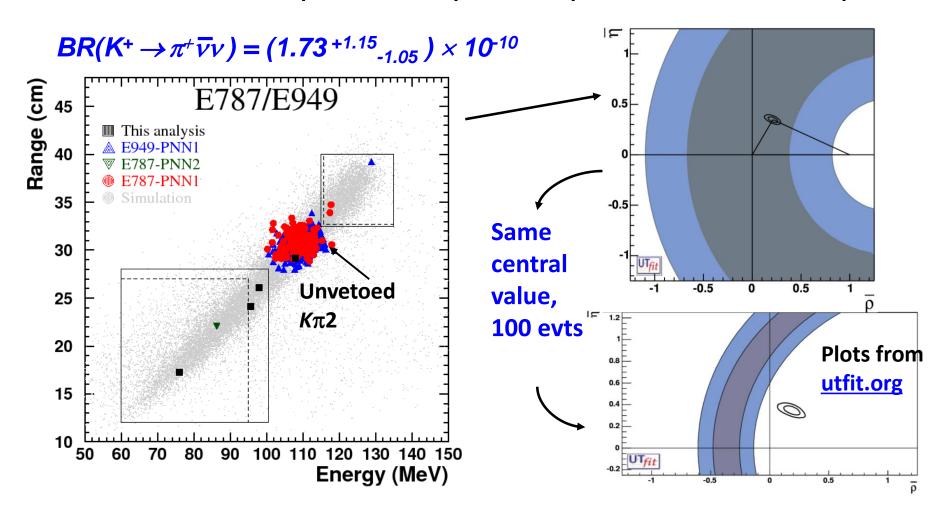
F. Ambrosino, T. Capussela, M. Corvino, D. Di Filippo, P. Massarotti, <u>M. Mirra</u>, M. Napolitano, G. Saracino


Outline

- $> K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay
- > NA62: apparato sperimentale
- > Attività napoletana in NA62 nel 2015
- > Risultati preliminari del run 2015
- ➤ Prospettive per il 2016

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay in SM

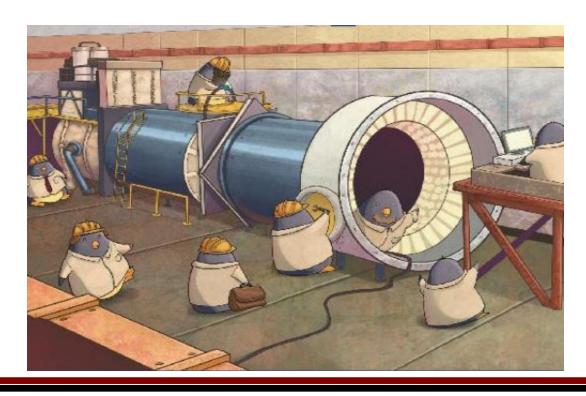
• FCNC loop processes: $s\rightarrow d$ coupling and highest CKM suppression



- Very clean theoretically:
 - > SD contribution dominate $A_q \sim \frac{M_q^2}{M_W^2} V_{qs}^* V_{qd}$
 - ightharpoonup Hadronic matrix element related to the precisely measured BR $(K^+ o \pi^0 e^+ \nu_e)$
- BR proportional to $|V_{ts}*V_{td}|^2$
- SM prediction [A.J. Buras et al, 2015, arXiv:1503.02693]

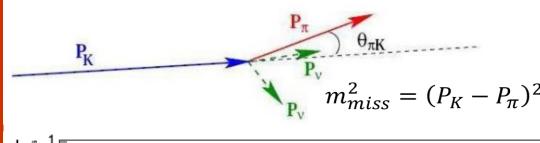
$$BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (9.11 \pm 0.72) \times 10^{-11}$$

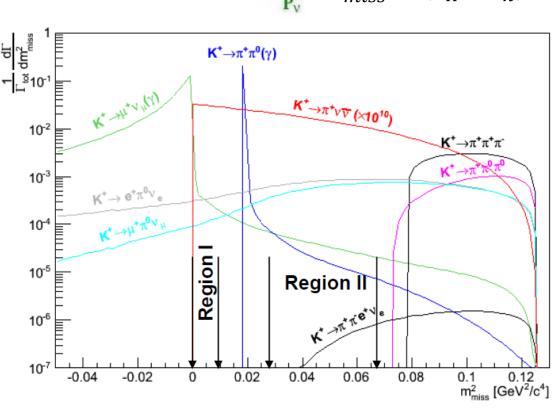
$K^+ \to \pi^+ \nu \bar{\nu}$ decay: experimental status


In 2008, combine E787 (1995-8 runs) & E949 (12-weeks run in 2001) results

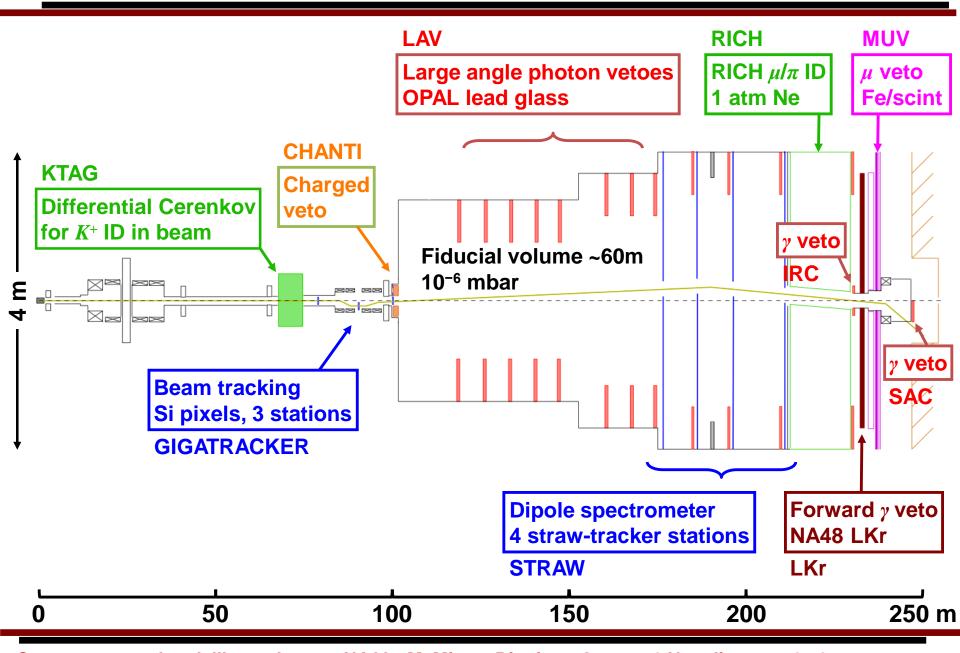
Expected bkg 2.6 events, prob. all 7 obs. evts are bkg is $\sim 10^{-3}$

Outline

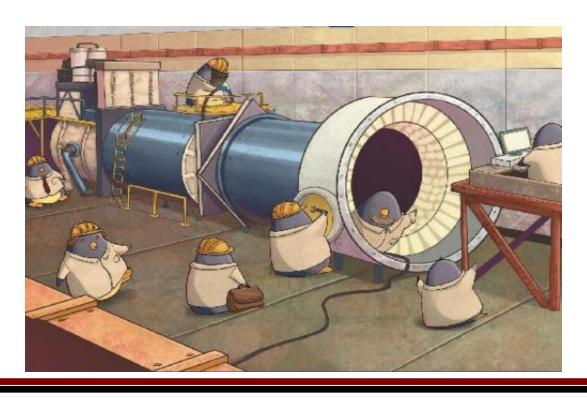

- $> K^+ \rightarrow \pi^+ \nu \nu \text{ decay}$
- > NA62: apparato sperimentale
- > Attività napoletana in NA62 nel 2015
- > Risultati preliminari del run 2015
- > Prospettive per il 2016



NA62 experimental strategy


Main goal: Detect ~100 SM $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decays with O(10%) precision BR measurement

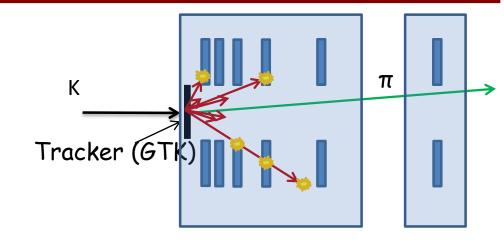
- High K momentum (in flight technique)
- Kinematical rejection w lightweight spectrometers (GTK, STRAW)
- Low π momentum to allow enough «missing» energy to be detected by hermetic veto detectors (LAV,IRC,SAC,LKr)
- Particle identification (RICH, MUV)
- Beam particle identification and inelastic event suppression (KTAG, CHANTI)



NA62 setup

Outline

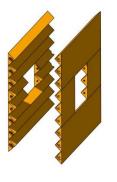
- $> K^+ \rightarrow \pi^+ \nu \nu \text{ decay}$
- > NA62: apparato sperimentale
- > Attività napoletana in NA62 nel 2015
- > Risultati preliminari del run 2015
- > Prospettive per il 2016



CHANTI postcard


Rivelatore 100% napoletano fin dalla proposta e dal progetto.

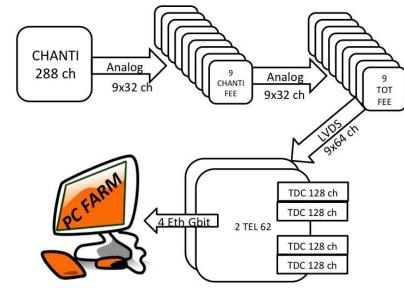
Sei anelli di guardia per vetare le interazioni inelastiche dei K sul GTK


Barre di scintillatori a sezioni triangolare letti tramite fibre WLS e SiPM, montate in modo da avere un piano X e uno Y per ogni stazione

Barra di scintillatore

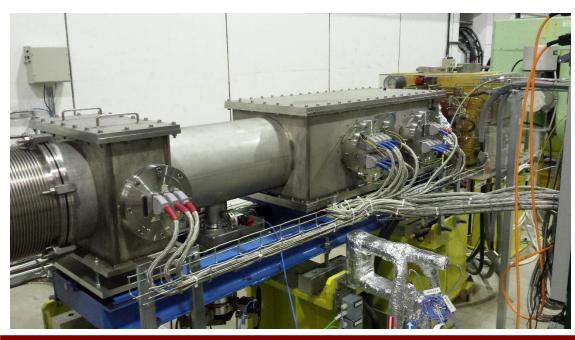


Layout dei layer X/Y



Stazione cablata

Elettronica di FE

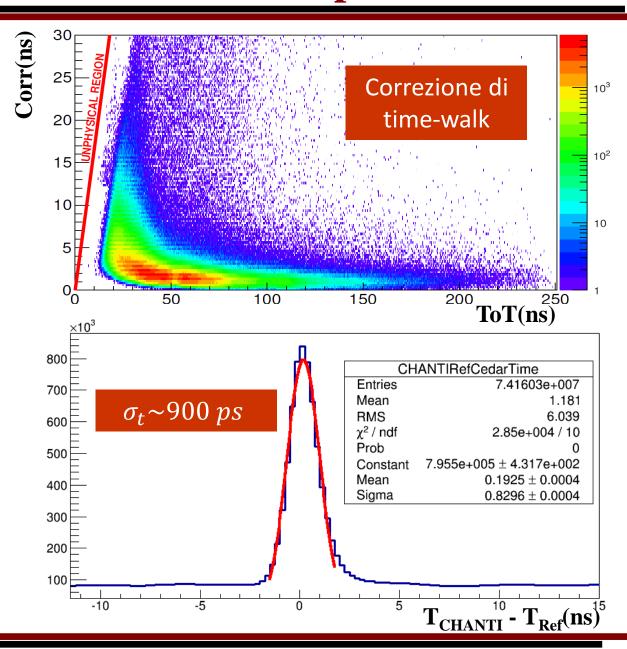

CHANTI in NA62

Run 2014 - Completata la costruzione e installato con test sull'elettronica

Run 2015 - Valutazione delle performance del rivelatore sul fascio (risoluzione temporale, efficienza di rivelazione, risoluzione spaziale, veto accidentale introdotto)

F.Ambrosino et al., *CHANTI: a Fast and Efficient Charged Particle Veto*Detector for the NA62 Experiment at CERN, arXiv:1512.00244 e

sottomesso su JINST Journal

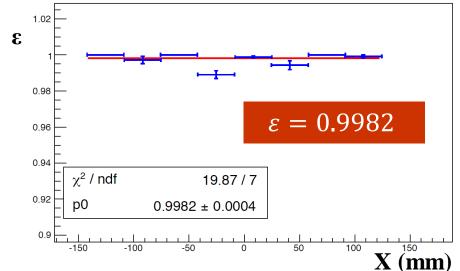


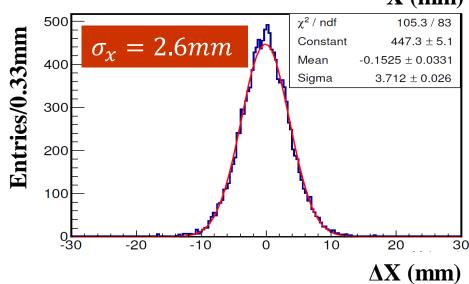
CHANTI: risoluzione temporale

Risoluzione temporale: tempo di un candidato CHANTI rispetto a un tempo di riferimento.

Il candidato CHANTI è un cluster di barre appartenenti alla stessa stazione.

I tempi provenienti dalle hit di ciascuna barra sono corrette per il time-walk (estr. lineare o correzione media)


CHANTI: efficienza e risoluzione spaziale

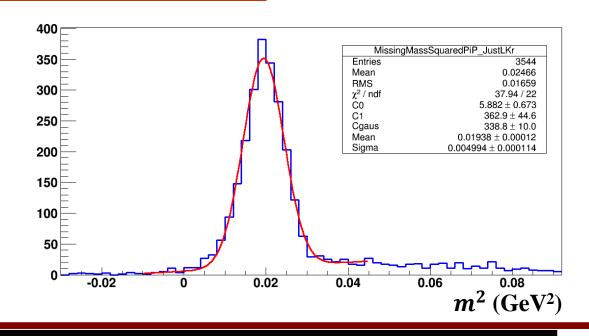

Run di muoni paralleli alla linea di fascio utilizzato per valutare 'ε' e 'σχ'

Efficienza valutata separatamente per i layer X e Y.

Evento di muone attraverso il CHANTI: almeno una hit in due barre adiacenti e nelle corrispondenti barre di altre 4 stazioni; viene valutata l'efficienza della sesta stazione

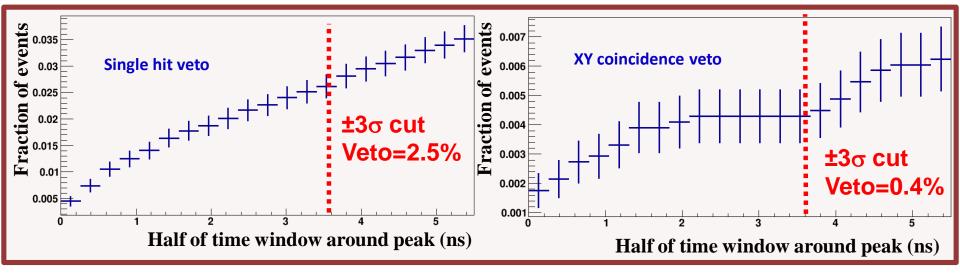
Coordinata X/Y determinata dalla media pesata con i ToT, della barre accesse durante il passaggio di un muone. Differenza della coordinata X/Y tra le stazioni 3 e 4 per valutare la risoluzione spaziale

CHANTI: veto accidentale

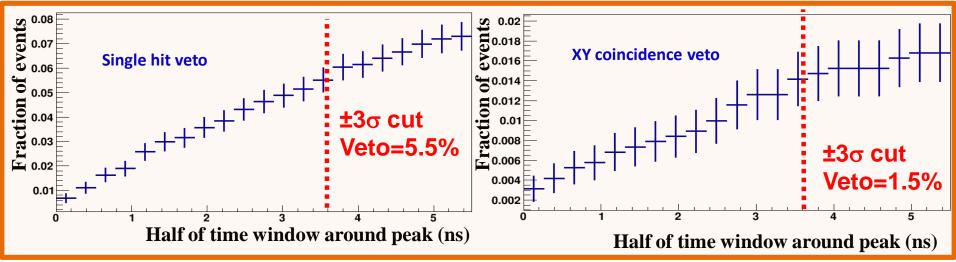

Selezione di un campione $K^+ \to \pi^+ \pi^0$ usando CHOD, LKr e KTAG

- Un candidato nel CHOD che fornisce il tempo di riferimento. I candidati degli altri detector in tempo con quello del CHOD
- KTAG identifica positivamente il **K**⁺
- Ricerca di 2 sciami em nel LKr. Nell'ipotesi che i due sciami em provengano dai γ del π^0 e usando il momento nominale del K^+ è possibile ricostruire il vertice di decadimento e tagliare sulla variabile

$$m^2 = \left(P_{K^+} - P_{\pi^0}\right)^2$$


Fit gaussiano (segnale) più funzione lineare (fondo) in diverse condizioni del beam

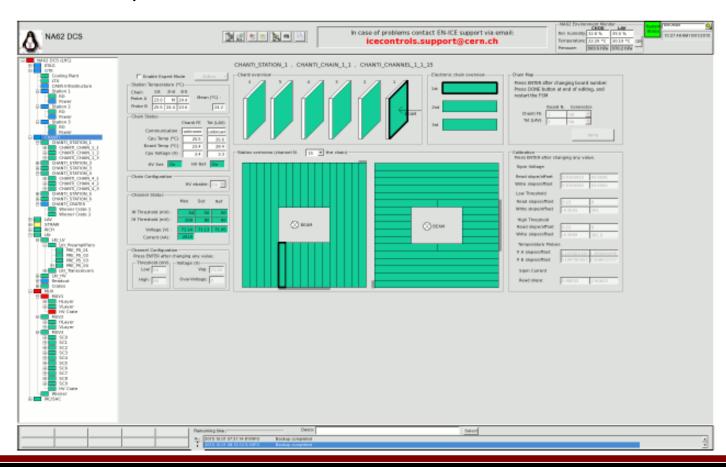
Campione $K^+ \to \pi^+\pi^0$ selezionanto mantenendo costante il rapporto segnale/rumore



CHANTI: veto accidentale

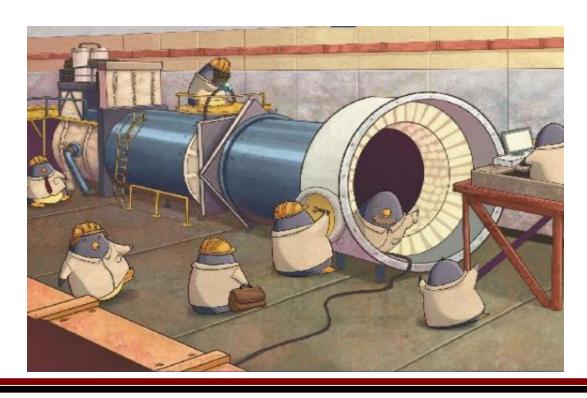
Run 2015: fascio al 10% dell'intensità nominale

Run 2015: fascio al 40% dell'intensità nominale

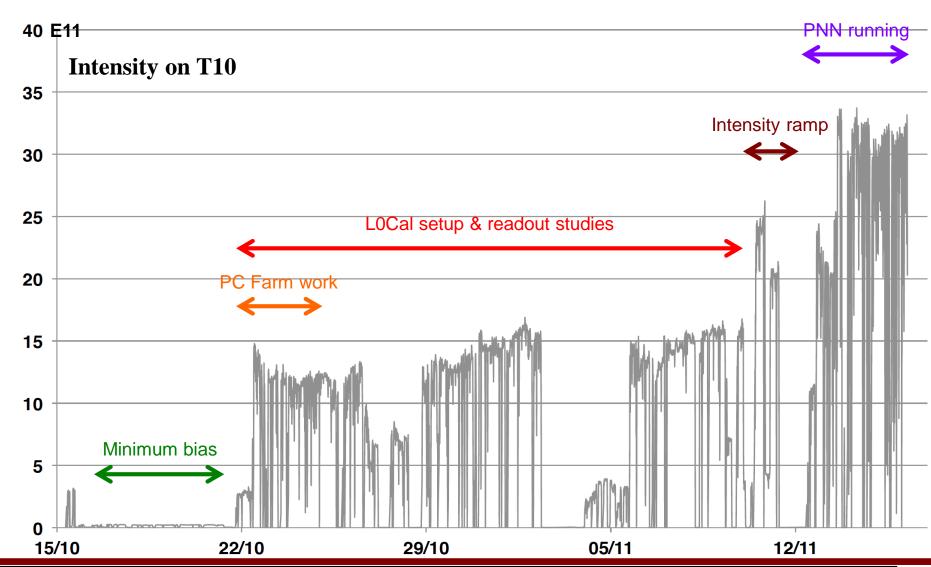


CHANTI DCS

Sistema di controllo del CHANTI integrato nel DCS generale di NA62


- Controllo/lettura delle soglie applicate al segnale dei SiPM
- Controllo/lettura della tensione di bias dei SiPM
- Lettura corrente dei SiPM
- Lettura delle temperature delle PT100

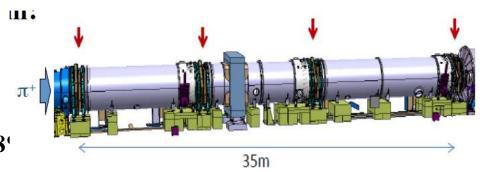
•

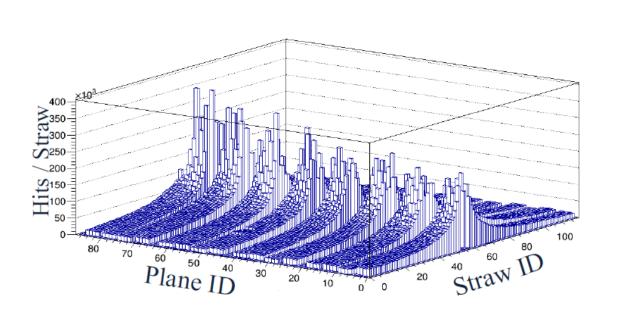

Outline

- $> K^+ \rightarrow \pi^+ \nu \nu \text{ decay}$
- > NA62: apparato sperimentale
- > Attività napoletana in NA62 nel 2015
- > Risultati preliminari del run 2015
- > Prospettive per il 2016

NA62: il run del 2015

Una buona quantità di dati raccolta per valutare le performance dei rivelatori, studiare sistematici e cominciare una vera analisi


NA62: pion tracking

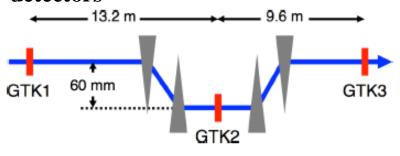

Straw-tracker

4 chambers, 2.1 m in diameter 16 layers (4 views) of straws per chamber

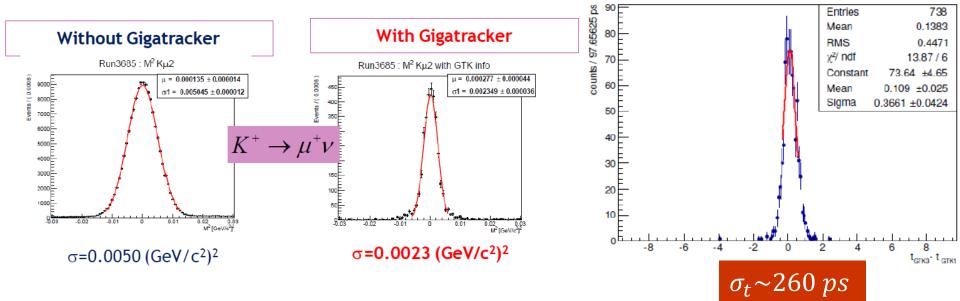
$$\sigma \le 130 \mu m (1 \text{ view})$$

0.45 X_0 per chamber

$$\sigma_p/p = 0.32\% \oplus 0.008^\circ$$
 $\sigma_{\theta(K\pi)} = 20\text{-}50 \text{ }\mu\text{rad}$

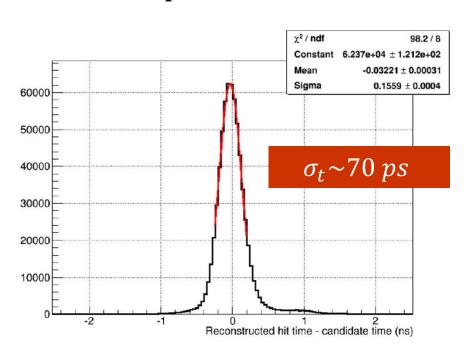


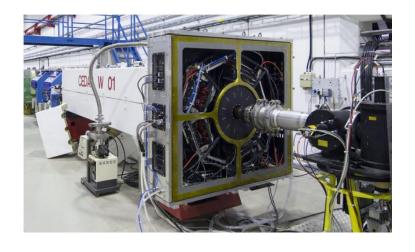
NA62: beam tracker

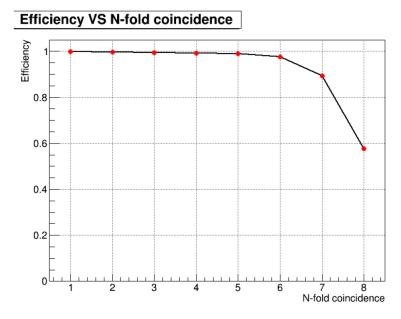

Gigatracker

Tracks particles in the unseparated beam with 3 planes of Si pixel detectors

On site bump bonded readout chip 0.13 µm CMOS tech (200+100 µm $\sim 0.5\%~X_0$) Pixel size $300x300\mu\text{m}^2$, σ_θ ~ 30 µrad

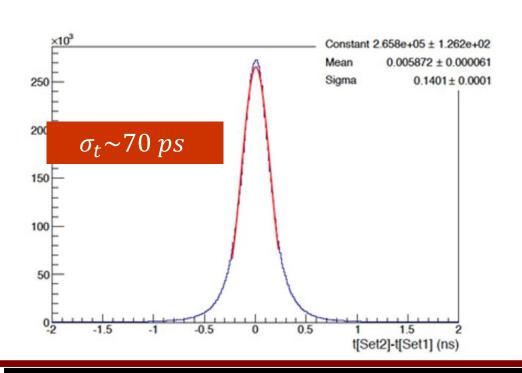


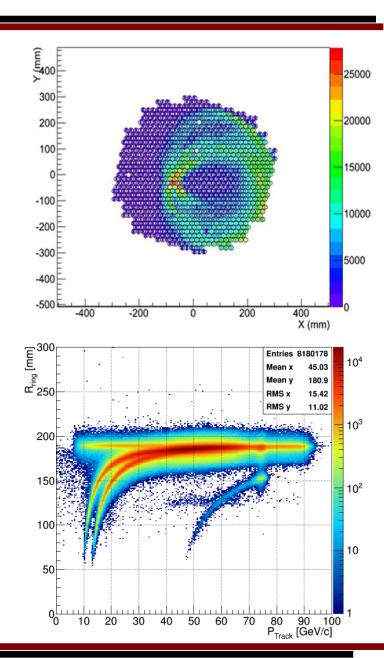



NA62 beam identification

KTAG

Identifica 45 MHz di K^+ in un fascio adronico di 750 MHz. Opera con N_2 a 1.1 bar o H_2 a 3 bar Efficienza del detector valutata considerando un campione di $K^+ \to \pi^+ \pi^0$; un pione è identificato erroneamente come un K con una probabilità dell'ordine di 10^{-4}





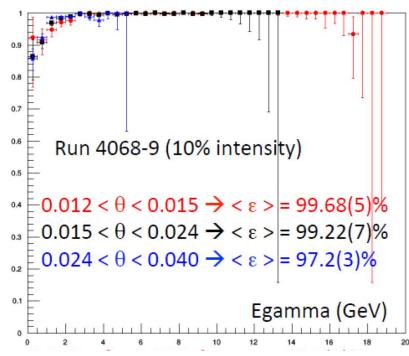
NA62 PID

RICH

 μ/π separation better than 1% for 15<p< 35GeV Risoluzione temporale dell'ordine di 70ps Durante il 2015 ha fornito un L0 trigger per particelle cariche Ne gas a 1 atm

NA62 photon veto detectors

Large angles vetoes (LAV) $8.5 < \theta < 50$ mrad


12 stazioni a intervallic di ~10m lungo la linea di fascio

Ogni stazione ha 4-5 anelli di blocchi al vetro-piombo Napoli ha partecipato alla costruzione a LNF e l'istallazione al CERN dei LAV

Efficienza

- Metodo: selezione di un campione di
 K⁺ → π⁺π⁰ richiedendo 1 traccia e un γ nel
 LKr, in modo da predire la posizione
 dell'altro γ nel LAV
- Eventi efficienti: c'è almeno un blocco acceso in corrispondenza del γ atteso nel LAV entro 5ns dal tempo di riferimento

NA62 photon veto detectors

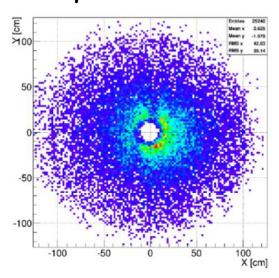
Large angles vetoes (LAV)

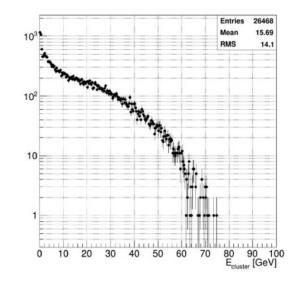
Discharges observed on air-side of all HV vacuum flanges. Symptoms of discharges:

- Tripped channels (single channels or clusters)
- Unstable HV boards: inability to control many channels
 - Generally, access required to reseat board
 - Possible to try rebooting HV crate remotely, but not always effective and generally difficult to restart OPC server

New flanges and connectors being installed – tight schedule of work but problem should be solved for 2016 run

NA62 photon veto detectors

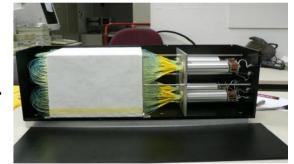

Liquid krypton calorimeter (LKr) $1 < \theta < 8.5$ mrad


Quasi-homogeneous calorimeter

Readout towers 2×2 cm² - 13248 channels

Depth 127 cm = 27 X_0

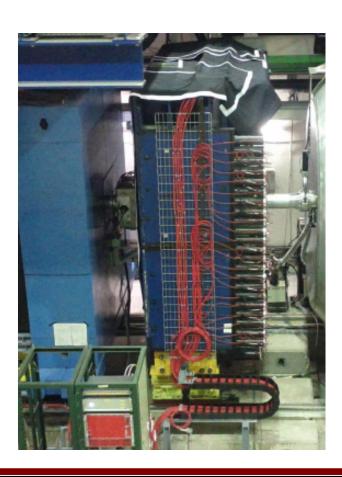
1–ε for γ with E > 10 GeV: $< 8 \times 10^{-6}$



IRC ans SAC ($\theta < 1$ mrad)

SAC: γ detection along the beamline (after beam deflection)

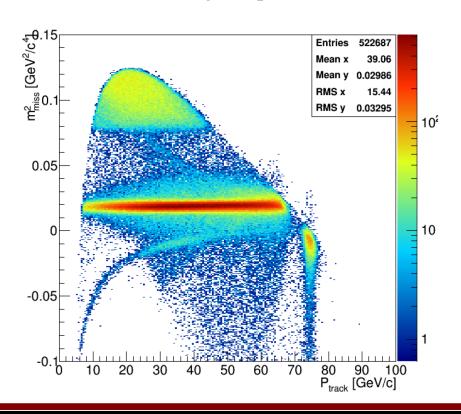
IRC: detection of photons at very low angle in front of the LKr

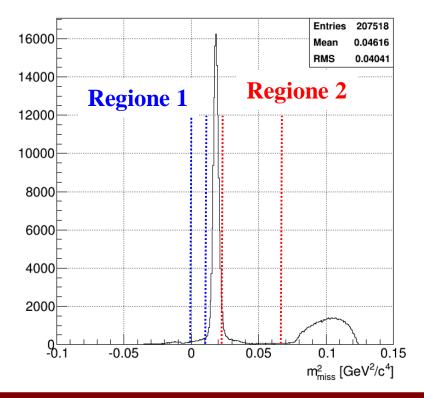

WLSs+PMTs used for both detectors

NA62 PID

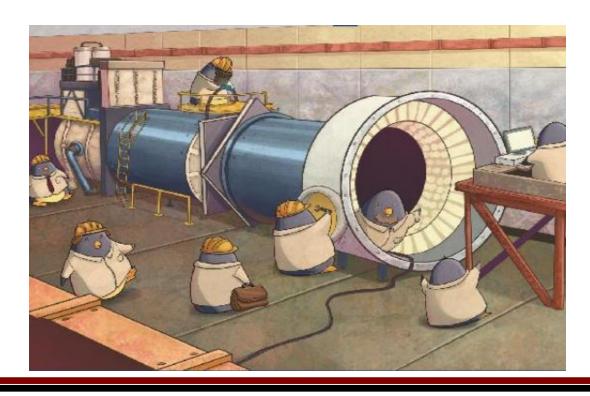
MUV1 & MUV2: calorimetri adronici

- 2 moduli di piani ferro/scintillatori (128+64 canali)
- FADC readout


MUV3: veto di muoni


- 2 148 tile di scintillatore
- CFD + TDC readout
- > Risoluzione temporale < 500ps

NA62: analisi preliminare dei dati


- > Spettrometro a straw: eventi in cui esiste una traccia singola, ossia una traccia che non forma un vertice con un'altra traccia individuata dalla straw stessa
- ➤ Matching in spazio e tempo della traccia (estrapolata) con un candidato nel CHOD, LKr, RICH, MUV1 e MUV3.
- ➤ Individuazione del candidato GTK tramite taglio temporale rispetto al tempo di riferimento e il CDA del vertice ricostruito
- Richiesta di matching temporale con un candidato KTAG individuato come K

Outline

- $> K^+ \rightarrow \pi^+ \nu \nu \text{ decay}$
- > NA62: apparato sperimentale
- > Attività napoletana in NA62 nel 2015
- > Risultati preliminari del run 2015
- ➤ Prospettive per il 2016

NA62 nel 2016

Beam

 Fascio di protoni disponibile dal 18 Aprile al 14 Novembre; NA62 ha richiesto l'intero periodo per la presa data

✓ 2006	Proposal
√ 2009	Approved
✓ 2010	Technical Design
✓ 2012	Technical Run
✓ 2014	Pilot run (almost
	full commissioning)
✓ 20152018	Physics run

Analisi dati del 2015

I dati del 2015 devono essere analizzati per poter individuare la giusta strategia di analisi per il run del 2016. Diversi canali da studiare:

- Decadimenti rari del K (analisi principale $K^+ \to \pi^+ \nu \overline{\nu}$)
- Ricerca di nuova fisica

Proposal per ricerca di nuova fisica

3-charge tracks events

- LFV and Majorana neutrino search from 21 final states
- Search for dark higgs from 31 final states
- Short-lived dark photos searched from 21 final states

2-charge tracks events

- One lepton: searches for long-lived heavy neutral leptons from target production and/or decays from beam particles
- Two leptons: search for long-lived dark photons from target production and/or decays from beam particles.

1-charge track events

- Peak searches in $K^+ \to \pi^+ X$, $\mu^+ Y$ with X a dark pion or a $\chi \chi$ pair and Y a heavy neutral lepton
- Studies of rare π^0 decays

0-charge tracks events

Searches for neutral resonances and axions

Proposal per ricerca di nuova fisica

Decay	Physics	Present limit (90% C.L.) / Result	NA62 Potential	
$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	0.7×10^{-12}	
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}	
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	0.7×10^{-12}	
$\pi^-e^+e^+$	LNV	6.4×10^{-10}	2×10^{-12}	
$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	0.4×10^{-12}	
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}	
$e^- \nu \mu^+ \mu^+$	LNV	No data	10^{-12}	
$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10^{-12}	
$\pi^+\chi\chi$	New Particle	_	10^{-12}	
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10^{-11}	
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10^{-11}	
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10^{-12}	
$\mu^+ \nu_h$, $\nu_h o \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 MeV$		
R_{K}	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better	
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events	
$\pi^0\pi^0e^+\nu$	χPT	66000 events	$O(10^6)$	
$\pi^0\pi^0\mu^+ u$	χPT	-	$O(10^5)$	

NA62-NA nel 2016

- Mantenere la responsabilità CHANTI (nel 2015 detector experts: F. Ambrosino, T. Capussela, D. Di Filippo, P. Massarotti, M. Mirra, G. Saracino)
- Completamento MC CHANTI
- Identificare un campione di eventi di anelastico per poter ottimizzare il taglio da applicare con il CHANTI
- Entrare nei gruppi di analisi dati: CHANTI fondamentale per il $K^+ \to \pi^+ \nu \bar{\nu}$, altre strade aperte ...
- Napoli insieme con LNF, Perugia, Ferrara, Firenze, Pisa, Roma TV, Torino richiederà un finanziamento con il PRIN per l'analisi e la ricerca nel dark sector e lo studio di trigger dedicati aventi come obiettivo la ricerca di decadimenti rari / nuova fisica

Conclusioni

- Il 2015 è stato un anno cruciale per NA62
- Il rivelatore CHANTI ha funzionato fin da subito secondo le prestazioni attese. Alcuni problemi da risolvere riguardanti il readout, già diverse idee su come agire
- Tutti i rivelatori hanno fornito delle risposte importanti nell'ultima presa dati; ora l'obiettivo è collezionare $O(10^{13})$ decadimenti del K prima del LS2

NA62 issues

TEL62s (both TDAQ readout and L0Cal):

- Symptom: Stop sending data
- Frequency: Many times/day
- Remedy: Board reload, ~ 5 minutes downtime

CREAMs:

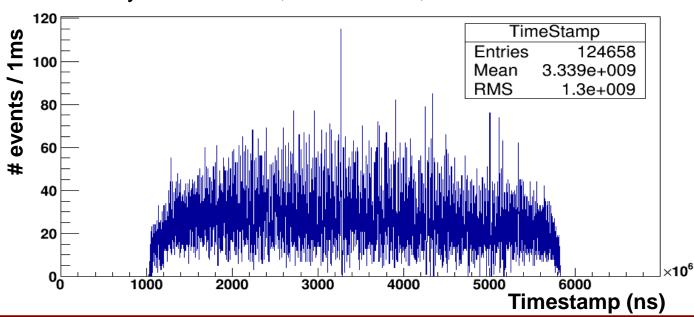
- Symptom: Stop sending data
- Frequency: Few times/day
- Remedy: Board reload, < 5 minutes downtime

Ethernet switches (both on floor and in EB):

- Symptom: Lost connection with elements in rack, including readout
- Frequency: 1/day
- Remedy: Manual reset, access required, > 20 minutes downtime

CAEN A4531 HV primary power supplies:

- Symptom: HV lost on detector (LAV, KTAG, MUV)
- Frequency: Random, up to a few times/week
- Remedy: Replacement: > 20 minutes downtime if spare available
- Problem seems to be failure of one particularly sensitive MOSFET;
 CAEN is working on a robust replacement

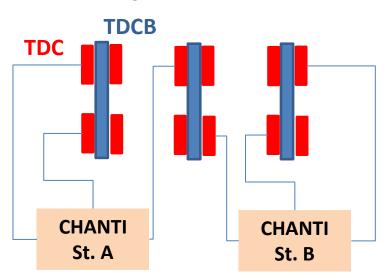

NA62 issues

Trigger condition

 At intensity below 50% data taken with a CHOD*!MUV3 trigger. At higher intensity problems with CHOD trigger; data collected with L0cal (LKr<4/5Gev & MUV1>5/6 GeV)

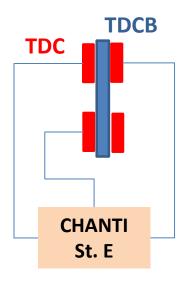
Frame limiters set for various TELs at restart of 40% program:

- Limit is applied to words stored per TDC per 6.4 us frame
- Initially for L0 TELs: RICH, CHOD, MUV3
- As intensity edged to 50%, also KTAG, CHANTI
- Above 60% intensity at end of run, also LAVs 1, 2



CHANTI cabling for the 2016 run

Present status: 2 tel62, each with 3 TDCBs. Just 3 TDCs of each TDCB are used (1 TDCB corresponds to 1 CHANTI station)


New configuration: 2 tel62, each with 4 TDCBs.

In 6 TDCBs just 2 TDCs will be used in order to connect the st. A,B,C and D (the ones with the highest rates).

limiter set to 500 word in 6.4us
It's possible to implement split of LVDS signal

In the other 2 TDCBs, 3 TDCs will be used in order to connect st. E and F.

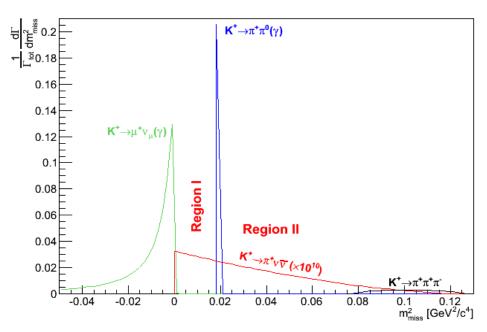
limiter set to 350 word in 6.4us

NA62

Primary SPS proton beam:

- p = 400 GeV protons
- Proton on target 1.1×10^{12} /s
- Simultaneous beam delivery to LHC

High-intensity, unseparated secondary beam


- Momentum selection chosen to optimize K decays
- p = 75 GeV/c
- $\Delta p/p \sim 1\%$

Total rate 750 MHz $\begin{cases} > 525 \text{ MHz } \pi \\ > 170 \text{ MHz } p \\ > 45 \text{ MHz } K \end{cases}$

Decay volume

- 60m long, starting at 102m from target
- 10% of K⁺ decay in FV ($\beta \gamma c \tau = 560m$)
- $4.5 \times 10^{12} \text{ K}^+ \text{ decays/yr}$

Performance for $K^+ \to \pi^+ \nu \bar{\nu}$

Acceptance: ~12%

3% in Region I

9% in Region II

50% loss from momentum cut

Detector inefficiencies included

45 signal events/yr

- 1 track with 15<p $_{\pi}$ <35 GeV and π PID in RICH
- No γ in LAV, LKr, IRC, SAC
- No μ in MUV

Total

- 1 beam particle in Gigatracker with K PID by KTAG
- No activity on CHANTI
- Z_{vtx} in 60m fiducial region

11%			
3%			
2%			
1%			
< 2%			
< 2%			
negligible			

Expected backgrounds

< 20%

NA62 sensitivity for LFNV decays

High fluxes and PID/veto capabilities of NA62 well suited to look for Lepton Flavor/ Lepton Number Violation modes in both kaon and pion decays:

Decays in FV in 2 years of data

$$\begin{cases} 1 \times 10^{13} K^{+} \text{ decays} \\ 2 \times 10^{12} \pi^{0} \text{ decays} \end{cases}$$

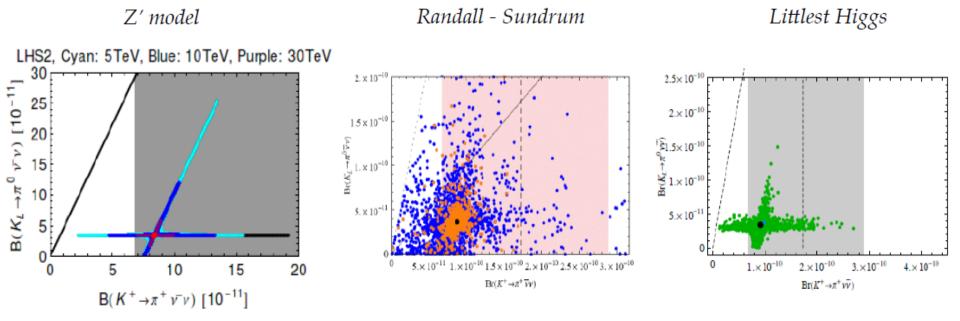
Single-event sensitivity 1/(decays × acceptance)

Mode	UL at 90% CL	Experiment	NA62 acceptance*	
$K^+ \rightarrow \pi^+ \mu^+ e^-$	1.3×10^{-11}	BNL 777/865	~10%	
$K^+ \longrightarrow \pi^+ \mu^- e^+$	5.2×10^{-10}	BNL 865	~10%	
$K^+ \longrightarrow \pi^- \mu^+ e^+$	5.0×10^{-10}	BNL 865	~10%	
$K^+ \longrightarrow \pi^- e^+ e^+$	6.4×10^{-10}	BNL 865	~5%	
$K^+ \longrightarrow \pi^- \mu^+ \mu^+$	1.1×10^{-9}	NA48/2	~20%	
$K^+ \rightarrow \mu^- v e^+ e^+$	2.0×10^{-8}	Geneva Saclay	~2%	
$K^+ \rightarrow e^- v \mu^+ \mu^+$	no data		~10%	
$\pi^0 \rightarrow \mu^+ e^-$	2.6 × 10-10	I/ToV/	~2%	
$\pi^0 \rightarrow \mu^- e^+$	3.6×10^{-10}	KTeV		

^{*} From fast Monte Carlo simulation with flat phase-space distribution. Includes trigger efficiency.

NA62 single-event sensitivities:

~10⁻¹² for
$$K^+$$
 decays ~10⁻¹¹ for π^0 decays


Rare π^0 decays in NA62

$2 \times 10^{12} \, \pi^0$ decays in FV in 2 years of data will allow substantial improvement of results in many channels

Mode	Current knowledge	Experiment	Expectation in SM	Physics interest		
Neutral modes						
$\pi^0 \rightarrow 3\gamma$	$BR_{90CL} < 3.1 \times 10^{-8}$	Crystal Box	Forbidden	Violates C		
$\pi^0 \rightarrow 4\gamma$	BR _{90CL} < 2×10 ⁻⁸	Crystal Box	BR ~ 10 ⁻¹¹	Scalar states $\pi^0 \rightarrow SS$		
$\pi^0 o ext{inv}$	BR _{90CL} < 2.7×10 ⁻⁷	BNL 949	BR < 10 ⁻¹³ (cosm. limit)	N_{v} , LFV		
Charged modes						
$\pi^0 \rightarrow e^+e^-e^+e^-$	BR = $3.34(16) \times 10^{-5}$	KTeV	3.26(18) ×10 ⁻⁵	Off-shell vectors		
$\pi^0 \rightarrow e^+ e^- \gamma$	BR _{95CL} ($\pi^0 \rightarrow U\gamma$): < 1×10 ⁵ , M_U = 30 MeV < 3×10 ⁶ , M_U = 100 MeV	WASA/COSY	Null result	Dark forces		

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ beyond SM

- Z' gauge boson mediating FCNC at tree level
- [A.J.Buras et al., JHEP 1302 (2013) 116; A.J.Buras et al. Eur. Phys. J. C74 (2014) 039]
- Littlest Higgs with T-parity [M. Blanke et al., Acta Phys. Polon. B 41 (2010) 657]
- Custodial Randall-Sundrum [M. Blanke et al.., JHEP 0903 (2009) 108]
- Best probe of MSSM non-MFV (still not excluded by LHC) [G. Isidori et al., JHEP 0608 (2006) 088]

