

THE SHIP PROJECT SEARCH FOR HIDDEN PARTICLES

Antonia Di Crescenzo

University & INFN Naples Italy

January 8th, 2016

INTRODUCTION

- Standard Model provides consistent description of Nature's constituents and their interactions
- No significant deviation from SM observed so far
- With a mass of the Higgs boson of 125 GeV, the Standard Model may be a self-consistent weakly coupled effective field theory up to very high scales
- SM is not a complete theory: explanation of experimental observations "Beyond the Standard Model" still missing
 - Neutrino masses and oscillations
 - Baryon asymmetry of the Universe (BAU)
 - Dark Matter

HIGH INTENSITY FRONTIER

HIDDEN SECTOR AND NEUTRINOS

 Hidden Sector accessible to intensity frontier experiments via sufficiently light particles, coupled to the Standard Model sector via renormalizable "portals"

- SHiP: new fixed target facility at the intensity frontier to explore Hidden Sector
- Neutrino physics
- Large variety of particles searched for and of theoretical models tested: scalar portal, vector portal, neutrino portal, axion portal ...

PROPOSAL(S)

PHYSICS

CERN-SPSC-2015-017/SPSC-P_350-ADD-1 arXiv:1504.04855 (hep-ph) TECHNICAL

CERN-SPSC-2015-016/SPSC-P_350 arXiv:1504.04956 (hep-ph)

EUROPEAN ORGANIZATION FOR NUCLE

234 authors 44 institutions 13 countries

SHiP

CERN-SPSC-2015-016 SPSC-P-350 8 April 2015

Technical Proposal

A Facility to Search for Hidden Particles (SHiP) at the CERN SPS

Proposals submitted to SPSC Referee's comments to TP **Addendum to TP submitted** Referee's comments to PP **Addendum to PP submitted**

April 2015 May 2015 **October 2015** September 2015 **December 2015**

PREPARED FOR SUBMISSION TO JHEP

A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case

Sergey Alekhin,^{1,2} Wolfgang Altmannshofer,³ Takehiko Asaka,⁴ Brian Batell,⁵ Fedor Bezrukov,^{6,7} Kyrylo Bondarenko,⁸ Alexey Boyarsky^{*},⁸ Nathaniel Craig,⁹ Ki-Young Choi,¹⁰ Cristóbal Corral,¹¹ David Curtin,¹² Sacha David Curtin,¹² Sacha David Curtin,¹² Sacha David Curtin,¹² Sacha David Curtin,¹³ Stefano Dell'Oro,¹⁶ Patrick deNiverville,¹⁷ P. S. Bhupal D Marco Drewes,²⁰ Shintaro Eijima,²¹ Rouven Essig,²² An Belen Gavela,²³ Gian F. Giudice,⁵ Dmitry Gorbunov,^{24,2} Christophe Grojean[§],^{26,27} Mark D. Goodsell,^{28,29} Alberto Steen H. Hansen,³² Juan Carlos Helo,¹¹ Pilar Hernandez,³³ A

STANDARD MODEL PORTALS

VECTOR PORTAL

- Kinetic mixing with the **dark photon**
- Possible dark matter candidate
- Possible solution to the *g*-2 anomaly

Production of the dark photon at the SPS

- proton bremsstrahlung
- decay of pseudo-scalar mesons
- limits on mean life from BBN $\tau_{\gamma} < 0.1$ s

Dark photons decay

- e⁺e⁻, μ⁺μ⁻,q**q**
- light dark matter $\chi \overline{\chi}$

HIGGS PORTAL

- Scalar singlet
- Mixing with the SM Higgs

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \rho - \sin \rho \\ \sin \rho & \cos \rho \end{pmatrix} \begin{pmatrix} \phi'_0 \\ S' \end{pmatrix}$$

Main production mechanism

 \blacktriangleright Rare decay of B mediated by light scalar φ

Decay channels • e⁺e⁻, μ⁺μ⁻

STANDARD MODEL PORTALS

AXION PORTAL

- Pseudo-scalar particles (pNGB, Axions, ALPs)
- Produced by symmetry breaking at high mass scale F
- Interaction proportional to 1/F
- Mixing with SM particles proportional to m_X/F

Production mechanism

• Mixing with π^0

Decay channels

e⁺e⁻, μ⁺μ⁻, qq̄, γγ

NEUTRINO PORTAL

• Mixing with **right-handed** neutrino *(details in the following slides)*

SUSY PORTAL

... and possibly higher dimensional operators portals and **Super-Symmetric** portals

(light neutralino, light sgoldstino, ...)

NEUTRINO PORTAL

vMSM: v-Minimal Standard Model

3 additional Heavy Neutral Leptons: right-handed Majorana neutrinos

- ▶ **N**₁ : Dark Matter candidate
- N_{2,3}: give mass to neutrinos via see-saw mechanism, produce baryon asymmetry

T.Asaka, M.Shaposhnikov PL B620 (2005) 17 M.Shaposhnikov Nucl. Phys. B763 (2007) 49

N_{1:} DARK MATTER CANDIDATE

- Weak coupling with other leptons
- ▶ Mass(N₁) ~ 10 KeV
- Enough stable to be a dark matter candidate

dominant process

subdominant radiative decay

• GALACTIC HINTS

- Astr. Phys. J. 789 (2014) 13, Phys. Rev. Lett. 113 (2014) 251301
- Not identified line in the X-ray spectrum of Andromeda and Perseus galaxies (E_γ=3.5 keV)

N_{2,3}: PRODUCTION AND DECAY

- $Mass(N_2) \sim Mass(N_3) \sim few \text{ GeV}$
- Weak mixing with active neutrino
 - \rightarrow very long lifetimes wrt SM particles >10 μ s
 - → flight length ~ km

PRODUCTION

- Mixing with active neutrino
- Semi-leptonic decay

DECAY

• Br(N $\rightarrow \mu / e \pi$) ~ 0.1 - 50 %

► Br(N
$$\rightarrow \mu/e \varrho$$
) ~ 0.5 - 20%

• Br(N
$$\rightarrow \nu \mu e$$
) ~ 1 - 10%

REQUIREMENTS

- Proposal: fixed target experiment at the CERN SPS
- SPS: $4x10^{13}$ protons per spill @ 400 GeV \rightarrow $2x10^{20}$ pot in 5 years (same as CNGS)

1) BACKGROUND REDUCTION

- Combinatorial background
- Neutrino flux
- Muon flux
- Neutrino interactions

1) SIGNAL ENHANCEMENT

- Geometrical acceptance
- Reconstruction of decays
- High sensitivity

DETECTOR LAYOUT

THE FIXED-TARGET FACILITY AT SPS

High-intensity proton beam: $4x10^{19}$ pot/yr, 5 years run

Location: Prevessin North Area site

Sharing of the TT20 transfer line and slow extraction mode with the fixed target programmes

R&D AT CERN FOR PROTON

EXTRACTION

- Deployment of the new SHiP cycle
- Extraction loss characterisation and optimisation
 - Reduce p density on septum wires
 - Probe SPS aperture limits during slow extraction
- Development of new TT20 optics
 - Change beam at splitter on cycle-to cycle basis
- Characterisation of spill structure
- R&D and development of laminated splitter and dilution (sweep) magnets

Successful test in April 2015

SENSITIVITIES

Based on 2x10²⁰ pot @400 GeV in 5 years

NEUTRINO PORTAL

10⁻¹

m_A [GeV]

10⁰

10¹

10⁻²

NEUTRINO PHYSICS @SHIP

- High neutrino flux expected
- Unique possibility of performing studies of v_{μ} , v_{e} , v_{τ}

 Energy spectrum of different neutrino flavors @beam dump

TAU NEUTRINO PHYSICS

• v_{τ} : the less known particle in the Standard Model

<u>DONUT</u>: 9 observed v_{τ} candidate events (leptonic number not measured) <u>**OPERA</u>**: discovery of $v_{\mu} \rightarrow v_{\tau}$ oscillations in appearance mode</u>

 \overline{v}_{τ} not detected yet!

NEUTRINO DETECTOR

Requirements:

 High spatial resolution to observe the τ decay (~1 mm)

→ EMULSION FILMS

 Electronic detectors to give "time" resolution to emulsions

→ TARGET TRACKER PLANES

 Magnetized target to measure the charge of τ products

→ DIPOLAR MAGNET

 Magnetic spectrometer to perform muon identification and measure its charge and momentum

→ MUON SPECTROMETER

NEUTRINO TARGET

- 1155 ECC bricks to be replaced 10 times
- Total emulsion surface: 8700 m²
 (8% of OPERA emulsion production)
- Scanning with modern automated microscopes

Emulsion Cloud Chamber (ECC) BRICK

- Passive material (Lead) 56 layers -
- High resolution tracker (Nuclear emulsions) - 57 films -

▶ 10 X₀

Performances

- Primary and secondary vertex definition with µm resolution
- Momentum measurement by Multiple Coulomb Scattering
 - largely exploited in the OPERA experiment -
- Electron identification: shower ID through calorimetric technique

v_{τ} /ANTI- v_{τ} SEPARATION

REQUIREMENTS

- Electric charge measurement of τ lepton decay products
- Key role for v_{τ}/v_{τ} separation in the τ ->h decay channel
- Momentum measurement

LAYOUT

- 3 OPERA-like emulsion films
- 2 Rohacell spacers (low density material)
- 1 Tesla magnetic field

Charge measured from the curvature of the track with the **sagitta** method

PERFORMANCES

- Sign of the electric charge can be determined with better than 3 standard deviation level up to 12 GeV
- The **momentum** of the track can be estimated from the sagitta
- $\Delta p/p < 20\%$ up to 12 GeV/c

NEUTRINO PHYSICS @SHIP

 Energy spectrum of different neutrino flavors interacting in the target

 CC DIS neutrino interactions in 5 years run (2x10²⁰ pot)

v_{τ} PHYSICS

- v_{τ} and \bar{v}_{τ} produced in the leptonic decay of a D^{-}_{s} meson into τ^{-} and \bar{v}_{τ} , and the subsequent decay of the τ^{-} into a v_{τ}
- Number of v_{τ} and \overline{v}_{τ} produced in the beam dump

$$N_{\nu_{\tau}+\bar{\nu}_{\tau}} = 4N_p \frac{\sigma_{c\bar{c}}}{\sigma_{pN}} f_{D_s} Br(D_s \to \tau) = 2.85 \cdot 10^{-5} N_p$$

• Main background source: charm production in $v_{\mu}^{CC}(\bar{v}_{\mu}^{CC})$ and $v_{e}^{CC}(\bar{v}_{e}^{CC})$ interactions, when the primary lepton is not identified

- Geometrical, location and decay search efficiencies considered
- Expectations in 5 years run (2x10²⁰pot)

STRUCTURE FUNCTIONS

High rates of Deep Inelastic Scattering interactions from *all three neutrino flavours* on target nucleons expected

$$\begin{split} \frac{d^2 \sigma^{\nu(\overline{\nu})}}{dx dy} &= \frac{G_F^2 M E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \left((y^2 x + \frac{m_\tau^2 y}{2E_{\nu} M}) F_1 + \left[(1 - \frac{m_\tau^2}{4E_{\nu}^2}) - (1 + \frac{M x}{2E_{\nu}}) \right] F_2 \\ &\pm \left[xy (1 - \frac{y}{2}) - \frac{m_\tau^2 y}{4E_{\nu} M} \right] F_3 + \frac{m_\tau^2 (m_\tau^2 + Q^2)}{4E_{\nu}^2 M^2 x} F_4 + \frac{m_\tau^2}{E_{\nu} M} F_5 \right), \end{split}$$

Structure functions

- Evaluation of F₃
- First evaluation of F₄ and F₅, not accessible with lighter neutrinos
 - At LO F₄=0, 2xF₅=F₂
 (Albright-Jarlskog relations)
 - At NLO F₄ ~ 1%

SENSITIVITY TO F₄ AND F₅

The SHiP experiment has the unique capability of being sensitive to F₄ and F₅

 $F_4 = F_5 = 0$ hypothesis \rightarrow increase of the v_{τ} and v_{τ} CC DIS cross sections \rightarrow increase of the number of expected v_{τ} and anti- v_{τ} $F_4 = F_5 = 0$ interactions

 v_{τ} CC DIS cross-section

r>1.6

r = ratio between the cross sections in the two hypotheses

CHARM PHYSICS @SHIP

- Large charm production in v_{μ}^{CC} and v_{e}^{CC} interactions
- Process sensitive to strange quark content of the nucleon

- Charm production with electronic detectors tagged by di-muon events (high energy cut to reduce background)
- Nuclear emulsion technique: charmed hadron identification through the observation of its decay
- Loose kinematical cuts
 → good sensitivity to the slow-rescaling threshold behavior and to the charm quark mass

CHARM PHYSICS @SHIP

Fraction of neutrino-induced charm events:Convolution of CHORUS data with SHiP spectrum

charm fractions (%)4.1 $\sigma_{charm}/\sigma_{\nu_{\mu CC}}$ 4.1 $\sigma_{charm}/\sigma_{\overline{\nu}_{\mu CC}}$ 6.0 $\sigma_{charm}/\sigma_{\nu_{eCC}}$ $\sigma_{charm}/\sigma_{\overline{\nu}_{eCC}}$ 6.0

 Expected charm yield exceeds the statistics available in previous experiments by more than one order of magnitude

	Expected events
$ u_{\mu}$	$6.8 \cdot 10^4$
ν_e	$1.5 \cdot 10^{4}$
$ar{ u_{\mu}}$	$2.7 \cdot 10^4$
$\bar{\nu_e}$	$5.4 \cdot 10^{3}$
total	$1.1 \cdot 10^{5}$

STRANGE QUARK NUCLEON CONTENT

 Charmed hadron production in antineutrino interactions selects anti-strange quark in the nucleon

Improvement achieved on s⁺/s⁻ versus x
Significant gain with SHIP data (factor 2) obtained in the x range between 0.03 and 0.35

Observed anti-v in CHORUS ~32 in NuTeV ~1400 Expected in SHIP ~ 27 000

TEST BEAM ACTIVITIES

- First SHiP test beam @CERN with nuclear emulsions performed in September / October 2015
- Aims:
 - **1**) Tracking in ECC with high density in magnetic field
 - 2) Measurement of particles charge and momentum with
 - the Compact Emulsion Spectrometer
 - **3)** Matching between emulsions and Micromegas
 - 4) Matching between emulsions and GEM
- Facilities:
 - Emulsion laboratory & dark room @CERN
 - T9 beam line (PS East Area), MNP-17 magnet
 - SPS North Area, Goliath Magnet

 Groups involved: Napoli-Emulsion group, RD51 groups for both Micromegas and GEM, Nagoya Group

THE NAPOLI GROUP

- A. Alexandrov
- A. Buonaura
- S. Buontempo
- L. Consiglio
- G. De Lellis
- A. Di Crescenzo
- G. Galati
- M. Iacovacci
- A. Lauria
- L. Lista
- M. C. Montesi
- V. Tioukov
- P. Strolin

CONCLUSIONS

- Search for new physics beyond Standard Model: explore the intensity frontier
- Rich Standard Model physics program: first observation of anti-v_τ, v_τ cross section studies and more
- First official outcome of the SPSC review expected in January 2016

BACK-UP SLIDES

PROJECT SCHEDULE

- Form SHiP Collaboration
- Technical Proposal
- Technical Design Report
- Construction and Installation
- Commissioning
- Data taking and analysis

December 2014 ✓ April 2015 ✓ 2018 2018-2023 2023 2026

SHIP LOCATION

Proposed location by CERN beams and support departments

A. Di Crescenzo - IFAE 2015

ACTIVE MUON SHIELD

- Muon flux driven by the HS background and emulsion-based neutrino detector
- Active muon shield based entirely on magnet sweeper with a total field integral B = 86.4 Tm
- Realistic design of sweeper magnets in progress
- Challenges: flux leakage, constant field profile, modeling magnet shape
- Rate reduction: from 10¹⁰ to 10⁴ muons/spill
- Negligible flux in terms of detector occupancy

HIDDEN SECTOR DETECTOR CONCEPT

Aim: Reconstruction of HS decays in all possible final states

- Long decay volume protected by various Veto Taggers
- Magnetic Spectrometer followed by the Timing Detector
- Calorimeters and Muon systems

Challenges

- Large vacuum vessel
- 5 m long straw tubes
- High resolution timing detector

 $\sigma_p/p\sim 0.5\% \oplus 0.02\% \times p$

 $\sigma E/E \sim 6\%/\sqrt{E}$

σt~100ps

DECAY VOLUME AND SPECTROMETER

Estimated need for vacuum: ~10⁻³ mbar

Vacuum Vessel

- 10 m x 5 m x 60 m
- Walls thickness: 8 mm (Al) / 30 mm (SS)
- Walls separation: 300 mm
- Liquid scintillator (LS) volume (~360 m³) readout by WLS optical modules (WOM) and PMTs
- Vessel weight ~ 480 t

viene da richiesta di <1 interazioni di neutrino, può non essere necessario stiamo studiando

Magnet designed with an

Outer quartz tube to separate Inner tube from LS

10 cm

Inner

Dip-coated

Ouartz tube

O(2 cm)

PMT

emphasis on low power

- Power consumption < 1 MW</p>
- Field integral: 0.65Tm over 5m
- Weight ~800 t

LS cell with WOMs

Aperture ~50 m²

LEPTON FLAVOUR IDENTIFICATION

Emulsion Cloud Chamber technique

<u>Lead plates</u> (high density material for the interaction) interleaved with <u>emulsion films</u> (tracking devices with μ m resolution)

v_μ identification: muon reconstruction in the magnetic spectrometer
 v_e identification: electron shower identification in the brick
 v_τ identification: disentanglement of τ production and decay vertices

EVENT TIME STAMP

Target tracker (TT)

FEATURES:

- Provide Time stamp
- Link track information in emulsions to signal in TT
- Link muon track information

in v target to μ magnetic spectrometer

REQUIREMENTS IN 1T FIELD:

- 100 μ m position resolution on both coordinates
- high efficiency (>99%) for angles up to 1 rad

POSSIBLE OPTIONS:

- Scintillating fibre trackers
- Micro-pattern gas detectors (GEM, Micromegas)

DETECTOR LAYOUT:

- ▶ 12 target planes interleaving the 11 brick walls at a few mm distance
- Transverse size of about 2 x 1 m²

SENSITIVITY TO F₄ AND F₅

 $E(\overline{v_{\tau}}) < 38 \text{ GeV}$ (~300 events expected)

r>1.6
 → evidence for non-zero values of F₄ and F₅

r = ratio between the cross sections in the two hypotheses

 $E(v_{\tau}+\bar{v_{\tau}}) < 20 \text{ GeV}$ (~420 events expected)

NEW PHYSICS IN THE HIDDEN SECTOR

Standard Model portals

D=2 Vector Portal

Kinetic mixing with massive dark/secluded/para-photon V → Interaction with 'mirror world' constituting dark matter

D=2 Higgs Portal

Mass mixing with dark singlet scalar χ

Mass to Higgs boson and right-handed neutrino, and function as inflaton in accordance with Planck measurements

D=5/2 Neutrino Portal

Mixing with right-handed neutrino **N** (Heavy Neutral Lepton) →Neutrino oscillation, baryon asymmetry, dark matter

D=4 Axion Portal

Mixing with Axion Like Particles, pseudo-scalars pNGB, axial vectors → Solve strong CP problem, Inflaton

 And possibly higher dimensional operators portals and SUper-SYmmetric portals (light neutralino, light sgoldstino, ...)

→SUSY parameter space explored by LHC

 $\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \rho - \sin \rho \\ \sin \rho & \cos \rho \end{pmatrix} \begin{pmatrix} \phi'_0 \\ S' \end{pmatrix}$

TEST BEAM ACTIVITIES

