

Recent Results

 and Future Prospects
From the Telescope Array Experiment

Daisuke IKEDA

Institute for Cosmic Ray Research, University of Tokyo
for the Telescope Array Collaboration

Telescope Array Collaboration

5 countries, 33 institutions, 124 members

RU Abbasi1, M Abe ${ }^{13}$, T Abu-Zayyad ${ }^{1}$, M Allen ${ }^{1}$, R Anderson ${ }^{1}$, R Azuma ${ }^{2}$, E Barcikowski¹, JW Belz ${ }^{1}$, DR Bergman ${ }^{1}$ SA Blake ${ }^{1}$, R Cady ${ }^{1}$, MJ Chae ${ }^{3}$, BG Cheon ${ }^{4}$, J Chiba ${ }^{5}$, M Chikawa ${ }^{6}$, WR Cho ${ }^{7}$, T Fujiii ${ }^{8}$, M Fukushima ${ }^{8,9}$, T Goto ${ }^{10}$ W Hanlon ${ }^{1}$, Y Hayashi ${ }^{10}$, N Hayashida ${ }^{11}$, K Hibino ${ }^{11}$, K Honda ${ }^{12}$, D Ikeda ${ }^{8}$, N Inoue ${ }^{13}$, T Ishii ${ }^{12}$, R Ishimor ${ }^{12}$, $\mathrm{H}^{\text {Ito }}{ }^{14}$, D Ivanov ${ }^{1}$, CCH Jui ${ }^{1}$, K Kadota ${ }^{16}$, F Kakimoto ${ }^{2}$, O Kalashev ${ }^{17}$, K Kasahara ${ }^{18}$, H Kawai ${ }^{19}$, S Kawakami ${ }^{10}$, S Kawana ${ }^{13}$, K Kawata ${ }^{8}$, E Kido ${ }^{8}$, HB Kim², JH Kim ${ }^{1}$, JH Kim ${ }^{25}$, S Kitamura ${ }^{2}$, Y Kitamura ${ }^{2}$, V Kuzmin ${ }^{17}$, YJ Kwon ${ }^{7}$, J Lan ${ }^{1}$, SI Lim ${ }^{3}$ JP Lundquist ${ }^{1}$, K Machida ${ }^{12}$, K Martens ${ }^{9}$, T Matsuda ${ }^{20}$, T Matsuyama ${ }^{10}$, JN Matthews ${ }^{1}$, M Minamino ${ }^{10}$, K Mukai ${ }^{12}$, I Myers ${ }^{1}$, K Nagasawa ${ }^{13}$, S Nagataki ${ }^{14}$, T Nakamura ${ }^{21}$, T Nonaka ${ }^{8}$, A Nozato ${ }^{6}$, S Ogio ${ }^{10}$, J Ogura ${ }^{2}$, M Ohnishi ${ }^{8}$, H Ohoka ${ }^{8}$, K Oki ${ }^{8}$, T Okuda ${ }^{22}$, M Ono ${ }^{14}$, A Oshima ${ }^{10}$, S Ozawa ${ }^{18}$, IH Park ${ }^{23}$, MS Pshirkov ${ }^{24}$, DC Rodriguez ${ }^{1}$, G Rubtsov ${ }^{17}$, D Ryu ${ }^{25}$, H Sagawa ${ }^{8}$, N Sakurai ${ }^{10}$, AL Sampson ${ }^{1}$, LM Scott ${ }^{15}$, PD Shah ${ }^{1}$, F Shibata ${ }^{12}$, T Shibata ${ }^{8}$, H Shimodaira ${ }^{8}$, BK Shin ${ }^{4}$, JD Smith ${ }^{1}$, P Sokolsky ${ }^{1}$, RW Springer ${ }^{1}$, BT Stokes ${ }^{1}$, SR Stratton ${ }^{1,15}$, TA Stroman ${ }^{1}$, T Suzawa ${ }^{13}$, M Takamura ${ }^{5}$, M Takeda ${ }^{8}$, R Takeishi ${ }^{8}$, A Taketa ${ }^{26}$, M Takita ${ }^{8}$, Y Tameda ${ }^{11}$, H Tanaka ${ }^{10}$, K Tanaka ${ }^{27}$, M Tanaka ${ }^{20}$, SB Thomas ${ }^{1}$, GB Thomson ${ }^{1}$, P Tinyakov ${ }^{17,24}$, I Tkachev ${ }^{17}$, H Tokuno ${ }^{2}$, T Tomida ${ }^{28}$, S Troitsky ${ }^{17}$, Y Tsunesada ${ }^{2}$, K Tsutsumi ${ }^{2}$, Y Uchihori29, S Udo ${ }^{11}$, F Urban ${ }^{24}$, G Vasiloff ${ }^{1}$, T Wong ${ }^{1}$, R Yamane ${ }^{10}$, H Yamaoka ${ }^{20}$, K Yamazaki ${ }^{10}$, J Yang ${ }^{3}$, K Yashiro ${ }^{5}$, Y Yoneda ${ }^{10}$, S Yoshida ${ }^{19}$, H Yoshii ${ }^{30}$, R Zollinger ${ }^{1}$, Z Zundel ${ }^{1}$

Hfigh Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA, ${ }^{2}$ Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan, ${ }^{3}$ Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea, ${ }^{4}$ Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea, ${ }^{5}$ Department of Physics, Tokyo University of Science, Noda, Chiba, Japan, ${ }^{6}$ Department of Physics, Kinki Univensity, Higashi Osaka, Osaka, Japan, Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea, 'Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan, Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Chiba, Japan, ${ }^{10}$ Graduate School of Science, Osaka City University, Osaka, Osaka, Japan, "Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan, ${ }^{12}$ Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan, ${ }^{19}$ The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan, ${ }^{14}$ Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan, ${ }^{15}$ Department of Physics and Astronomy, Rutgers University - The State University of New Jersey, Piscataway, New Jersey, USA, ${ }^{16}$ Department of Physics, Tokyo City University, Setagaya-ku, Iokyo, Japan, ${ }^{15}$ Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia, ${ }^{18}$ Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Iokyo, Japan, ${ }^{10}$ Department of Physics, Chiba University, Chiba, Chiba, Japan, ${ }^{20}$ Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan, ${ }^{21}$ Faculty of Scence, Kochi University, Kochi, Kochi, Japan, ${ }^{22}$ Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan, ${ }^{23}$ Department of Physics, Sungkyunkwan University, Jang-angu, Suwon, Korea, ${ }^{24}$ Service de Physique Theorique, Universite Libre de Bruxelles, Brussels, Belgium, ${ }^{25}$ Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gi1, Ulsan, Korea, ${ }^{25}$ Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan, ${ }^{25}$ Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan, ${ }^{25}$ Advanced Science Institute, RIKEN, Wako, Saitama, Japan, ${ }^{20}$ National Institute of Radiological Science, Chiba, Chiba, Japan, ${ }^{30}$ Department of Physics, Ehime University, Matsuyama, Ehime, Japan
USA, Japan, Korea, Russia, Belgium

Fluorescence Detector

Fluorescence Detector station at BR/LR site

BR/LR site : new telescopes for TA

Fluorescence Detector station at MD site

Transferred from HiRes

- 14 cameras/station
- 256 PMTs/camera
- $3^{\circ}-31^{\circ}$ elevation with 1° pixel
- 114° in azimuth
- $5.2 \mathrm{~m}^{2}$ mirror
- S/H electronics

TALE FD: TA Low Energy Extension

TALE FD

- 10 telescopes
- High elevation angle (31-59 degrees) to see low energy showers
- Observation was started since fall 2013

Shower Analysis of FD

Resolutions (Hybrid):
~1 degrees of arrival direction
$\sim 7 \%$ of energy
~ 20g/cm2 for Xmax
Shower geometry reconstruction:

- Stereo : crossing of two shower-detector planes
- Monocular: timing information of each PMT
- Hybrid : monocular + SD timing

Surface Detector

Surface Detector array

Shower Analysis in SD

Energy Spectrum

TA SD 7 year spectrum

Going below $10^{18} \mathrm{eV}$: TALE FD

- Events with high Cherenkov fraction used to be discarded by previous experiments
- Have learned how to analyze using Profile constrained Geometry Fit (PCGF) method

Cherenkov event

Energy resolution: ~15\% Xmax resolution: $\sim 40 \mathrm{~g} / \mathrm{cm}^{2}$ \dagger

- FD monocular mode
- After the construction of TALE SD, those are improved by the Hybrid technique

Mixed (Fluorescence + Cherenkov)

TA SD 7yr +TALE 1yr

energy spectrum

A single unified energy scale for the measurement of four features

Study the transition region from Galactic to Extra-galactic cosmic ray flux

Extended coverage including four cosmic ray spectral features in the UHECR

- GZK? suppression $10^{19.78} \mathrm{eV}$
- Ankle $10^{18.7} \mathrm{eV}$
- Second Knee $10^{17.3} \mathrm{eV}$
- Low-energy ankle $10^{16.3} \mathrm{eV}$

Composition

$X_{\max }$ measurement in TA

Xmax, depth of the shower maximum, is the composition-sensitive parameter

Multiple $X_{\text {max }}$ measurements for the systematic cross check

- Stereo
- MD Hybrid
- BR/LR Hybrid
- (Monocular)

Results of $<X_{\max }>$ measurements

Comparison with the model

p-air

 cross sectionUsing deeply penetrating particles
\rightarrow the tail of Xmax distribution
$\Lambda=\mathrm{K} \wedge_{\text {p-air }}=\mathrm{K}\left(14.45 \mathrm{~m}_{\mathrm{p}} / \sigma_{\mathrm{p} \text {-air }}\right)$
K : Model dependent factor

Anisotropy: Hotspot

Previous Report (2014)

Abbasi, R.U., et al., ApJL, 790, L21 (2014)

Procedure:

- TASD data which have more than 57 EeV
- Summed in 20 degrees circles (oversampling)
- Significance calculated using Li-Ma : 5.1σ (pre-trial)
- Chance probability to observe this significance is considered : 3.4σ

Hotspot update : 7 year

Period	Total	Signal	B.G.	Chance Prob.	
6-th Year	15	3	0.94	7%	
7-th Year	22	1	1.37	74%	
6th + 7th	37	4	2.31	20%	25

7 year excess map

Max significance $5.1 \sigma\left(N_{\text {SIG }}=24, N_{B G}=6.88\right)$ for 7 years Centered at R.A $=148.4^{\circ}$, Dec. $=44.5^{\circ}$ (shifted from SGP by 17°) Global Excess Chance Probability: $3.7 \times 10^{-4}: 3.4 \sigma$
(~ same as first 5 years) 26

All Sky Survey with TA\&PAO

Oversampling with 20°-radius circle

No correction for E scale difference b/w TA and PAO !!

Northern TA : 7 years 109 events (>57EeV) Southern Auger: 10 years 157 events ($>57 \mathrm{EeV}$) Southern hotspot is seen at Cen A(Pre-trial ~3.6\%)

Nearby Galaxy Clusters

Ursa Major Cluster ($\mathrm{D}=20 \mathrm{Mpc}$)

Virgo Cluster ($\mathrm{D}=20 \mathrm{Mpc}$)

Centaurus
Supercluster (D=60Mpc)

Dots : 2MASS catalog Heliocentric velocity $<3000 \mathrm{~km} / \mathrm{s}(\mathrm{s}<\sim 45 \mathrm{MPDC})$
TA hotspot is found near the Ursa Major Cluster TA \& PAO found no excess in the direction of Virgo.

Future of TA

TAx4 TALE

TAx4: High energy extension

- Quadrature TA SD (~3000km²)
- 500 SDs
- 2.08km spacing
- Approved in Japan (April 2015)
- Two additional FDs
- The Utah TAx4 FD proposal has been accepted by the NSF (New!!)

TALE SD: TA low energy extension

- 40 SDs for 400 m spacing
- 36 SDs for 600 m spacing
- Approved in Japan (April 2015)
- Mode energy of SD: $10^{16.5} \mathrm{eV}$

TAx4/TALE detector construction was started !!

- 100 of SDs has been shipped to Utah
- Additional assemble in Japan is scheduled on next August
- First deployment will be in this winter (depends on the permission from the BLM)

Other activities in TA site

Bistatic radar (TARA)

Lightning mapping array (TA-LMA / TA-LLS)

Radio with accelerator

Single (or few) pixel FD

(NICHE)

EUSO prototype (TA-EUSO)

Summary

- TA entered 9th year of observation
- Physics results:
- Wide-range energy spectrum which has 4 features
- "Light" composition from $10^{18.2} \mathrm{eV}$
- p-air cross section at $\sqrt{ } \mathrm{S}=95 \mathrm{TeV}$
- Photon upper limit from $10^{18} \mathrm{eV}$
- Hotspot in 7 years SD data
- Future of TA: Higher/Lower energy extension
- TAx4 SD : Approved in Japan (2015)
- TAx4 FD : Accepted in US (2016)
- TALE SD: Approved in Japan (2015)

