

Recent Results and Future Prospects From the Telescope Array Experiment

Daisuke IKEDA Institute for Cosmic Ray Research, University of Tokyo for the Telescope Array Collaboration

Telescope Array Collaboration

5 countries, 33 institutions, 124 members

RU Abbasi¹, M Abe¹³, T Abu-Zayyad¹, M Allen¹, R Anderson¹, R Azuma², E Barcikowski¹, JW Belz¹, DR Bergman¹, SA Blake¹, R Cady¹, MJ Chae³, BG Cheon⁴, J Chiba⁵, M Chikawa⁶, WR Cho⁷, T Fujii⁸, M Fukushima^{8,9}, T Goto¹⁰, W Hanlon¹, Y Hayashi¹⁰, N Hayashida¹¹, K Hibino¹¹, K Honda¹², D Ikeda⁸, N Inoue¹³, T Ishii¹², R Ishimor¹², H Ito¹⁴, D Ivanov¹, CCH Jui¹, K Kadota¹⁶, F Kakimoto², O Kalashev¹⁷, K Kasahara¹⁸, H Kawai¹⁹, S Kawakami¹⁰, S Kawana¹³, K Kawata⁸, E Kido⁸, HB Kim⁴, JH Kim¹, JH Kim²⁵, S Kitamura², Y Kitamura², V Kuzmin¹⁷, YJ Kwon⁷, J Lan¹, SI Lim³, JP Lundquist¹, K Machida¹², K Martens⁹, T Matsuda²⁰, T Matsuyama¹⁰, JN Matthews¹, M Minamino¹⁰, K Mukai¹², I Myers¹, K Nagasawa¹³, S Nagataki¹⁴,T Nakamura²¹, T Nonaka⁸, A Nozato⁶, S Ogio¹⁰, J Ogura², M Ohnishi⁸, H Ohoka⁸, K Oki⁸, T Okuda²², M Ono¹⁴, A Oshima¹⁰, S Ozawa¹⁸, IH Park²³, MS Pshirkov²⁴, DC Rodriguez¹, G Rubtsov¹⁷, D Ryu²⁵, H Sagawa⁸, N Sakurai¹⁰, AL Sampson¹, LM Scott¹⁵, PD Shah¹, F Shibata¹², T Shibata⁸, H Shimodaira⁸, BK Shin⁴, JD Smith¹, P Sokolsky¹, RW Springer¹, BT Stokes¹, SR Stratton^{1,15}, TA Stroman¹, T Suzawa¹³, M Takamura⁵, M Takeda⁸, R Takeishi⁸, A Taketa²⁶, M Takita⁸, Y Tameda¹¹, H Tanaka¹⁰, K Tanaka²⁷, M Tanaka²⁰, SB Thomas¹, GB Thomson¹, P Tinyakov^{17,24}, I Tkachev¹⁷, H Tokuno², T Tomida²⁸, S Troitsky¹⁷, Y Tsunesada², K Tsutsumi², Y Uchihori²⁹, S Udo¹¹, F Urban²⁴, G Vasiloff¹, T Wong¹, R Yamane¹⁰, H Yamaoka²⁰, K Yamazaki¹⁰, J Yang³, K Yashiro⁵, Y Yoneda¹⁰, S Yoshida¹⁹, H Yoshii³⁰, R Zollinger¹, Z Zundel¹

¹High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA, ²Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan, ³Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea, ⁴Department of Physics, and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea, ⁵Department of Physics, Tokyo University of Science, Noda, Chiba, Japan, ⁶Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea, ⁶Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan, ⁷Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea, ⁶Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Chiba, Japan, ¹⁰Graduate School of Science, Osaka City University, Osaka, Osaka, Japan, ¹¹Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan, ¹²Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan, ¹⁰Eraduate School of Science and Engineering, Saitama University, Saitama, Japan, ¹⁴Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan, ¹⁵Department of Physics, Tokyoo City University, Setagaya-ku, Tokyo, Japan, ¹⁰Institute for Nuclear Research of the Russian Academy of Science, Moscow, Russia, ¹⁴Advanced Research Institute for Science and Engineering, Vaseda University, Shinguku-ku, Tokyo, Japan, ¹⁵Department of Physics, Chiba University, Chiba, Chiba, Japan, ²⁰Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan, ²¹Faculty of Science, Kochi University, Kochi, Kochi, Japan, ²²Department of Physics, Chiba University, Graduate School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIVERSI, ²⁰Service de Physique Theorique, University, Idaga, Parseasel, Belgium, ²⁰Departme

USA, Japan, Korea, Russia, Belgium

Fluorescence Detector

Fluorescence Detector station at BR/LR site

BR/LR site : new telescopes for TA

Fluorescence Detector station at MD site

Transferred from HiRes

- 14 cameras/station
- 256 PMTs/camera
- 3°-31° elevation with 1° pixel
- 114° in azimuth
- 5.2m² mirror
- S/H electronics

TALE FD: TA Low Energy Extension

TALE FD

MD FD

10 telescopes

low F

- High elevation angle (31-59 degrees) to see low energy showers
- Observation was started since fall 2013

Surface Detector

Shower Analysis in SD

Energy Spectrum

TA SD 7 year spectrum

13

Going below 10¹⁸eV: TALE FD

- Events with high Cherenkov fraction used to be discarded by previous experiments
- Have learned how to analyze using Profile constrained Geometry Fit (PCGF) method

Energy resolution: ~15% Xmax resolution: ~40g/cm² *f*

- FD monocular mode
- After the construction of TALE SD, those are improved by the Hybrid technique

Cherenkov event

Mixed (Fluorescence + Cherenkov)

TA SD 7yr +TALE 1yr energy spectrum

A single unified energy scale for the measurement of four features

Study the transition region from Galactic to Extra-galactic cosmic ray flux

Composition

X_{max} measurement in TA

Results of <X_{max}> measurements

Anisotropy: Hotspot

Previous Report (2014)

Abbasi, R.U., et al., ApJL, 790, L21 (2014)

Procedure:

- TASD data which have more than 57EeV
- Summed in 20 degrees circles (oversampling)
- Significance calculated using Li-Ma : 5.1 σ (pre-trial)
- Chance probability to observe this significance is considered : 3.4 σ

(post-trial)

7 year excess map

Max significance 5.1 σ (N_{SIG} = 24, N_{BG}=6.88) for 7 years Centered at R.A=148.4°, Dec.=44.5° (shifted from SGP by 17°) Global Excess Chance Probability: 3.7×10^{-4} : 3.4σ

(~ same as first 5 years) 26

No correction for E scale difference b/w TA and PAO !! Northern TA: 7 years 109 events (>57EeV) Southern Auger: 10 years 157 events (>57EeV)

Southern hotspot is seen at Cen A(Pre-trial $\sim 3.6\sigma$)

Future of TA

TAx4: High energy extension

- Quadrature TA SD (~3000km²)
 - 500 SDs
 - 2.08km spacing
 - Approved in Japan (April 2015)
- Two additional FDs
 - The Utah TAx4 FD proposal has been accepted by the NSF (New!!)

TALE SD: TA low energy extension

- 40 SDs for 400m spacing
- 36 SDs for 600m spacing
- Approved in Japan (April 2015)
- Mode energy of SD: 10^{16.5} eV

TAx4/TALE detector construction was started !!

- 100 of SDs has been shipped to Utah
- Additional assemble in Japan is scheduled on next August
- First deployment will be in this winter (depends on the permission from the BLM)

Other activities in TA site

Bistatic radar (TARA)

Radio with accelerator

Single (or few) pixel FD

Lightning mapping array (TA-LMA / TA-LLS)

Non-imaging Cherenkov array (NICHE)

EUSO prototype (TA-EUSO)

Summary

- TA entered 9th year of observation
- Physics results:
 - Wide-range energy spectrum which has 4 features
 - "Light" composition from 10^{18.2}eV
 - p-air cross section at $\sqrt{S} = 95 \text{TeV}$
 - Photon upper limit from 10¹⁸eV
 - Hotspot in 7 years SD data
- Future of TA: Higher/Lower energy extension
 - TAx4 SD : Approved in Japan (2015)
 - TAx4 FD : Accepted in US (2016)
 - TALE SD: Approved in Japan (2015)