

Fermi-LAT observations of the gamma-ray emission from the Quescient sun – first 7 years in orbit

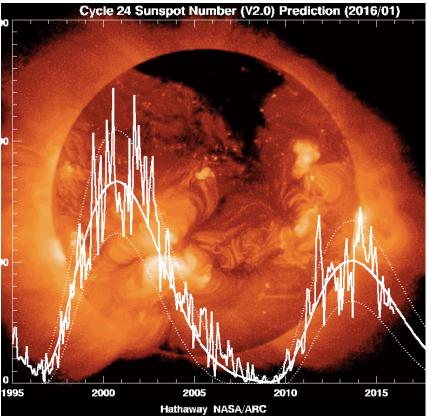
<u>S.Rainò,</u>

N.Giglietto, I.Moskalenko, E.Orlando and A. Strong

> for the Fermi LAT Collaboration

Trmi Not flaring Sources in the Solar System

- MOON and SUN are bright solar system sources in gamma-rays due to their interaction with Galactic Cosmic Rays (CR)
- Moon gamma-ray emission depends on the flux of CR nuclei near its surface (pointlike emission)
- Ackermann et al., Physical Review D, 93, 082001 (2016)
 Quiet gamma-ray emission from the Sun has two
- components:
 - Extended emission: Inverse Compton (IC) due to the CR electron scattering off solar photons in the heliosphere
 - Pointlike emission: CR nuclei interactions with the solar atmosphere atmosp



- Gamma-ray emission studies are a sensible probe for CR fluxes in the solar system and for electrons in the inner heliosphere
- Gamma-ray flux measurements depend on the solar cycle
- IC solar emission is extended and is a background for many studies; a detailed knowledge of this emission is needed

Solar activity and Cosmic rays

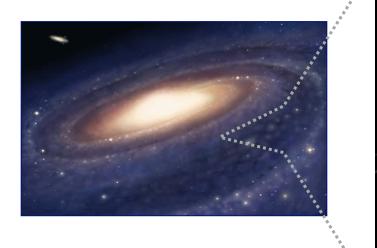
Max solar activity -> min cosmic-ray flux Min solar activity -> max cosmic-ray flux The gamma-ray flux depends on CRs flux intensities

Gamma-ray Space Telescope

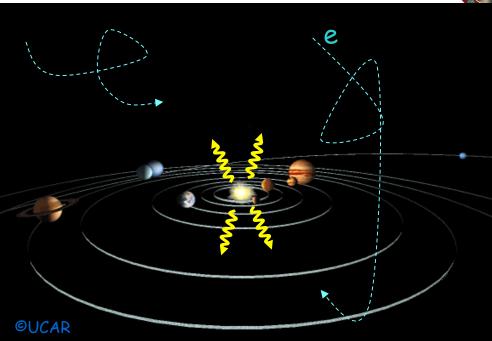
> Solar activity is now decreasing after having reached its peak in 2014

ermi Gamma-ray emission from the quiet Sun

- Inverse Compton (IC) emission from the Sun 1) idea and theory: Moskalenko et al. 2006, Orlando & Strong 2006, 2008 radial **Galactic CRs**
 - + 2) Solar disk emission due to interactions of CR particles with solar atmosphere model : Seckel 91, upper-limit detection: Thompson 97
 - First detection (EGRET): Orlando & Strong, 2008


Gamma-ray Space Telescope

Fermi-LAT observation of the Sun emission in the first 18 months of data taking: Astrophysical Journal 734 (2011) 116


Inverse Compton Emission

6

Gamma-ray pace Telescope

Inverse-Compton scattering of solar photons in the heliosphere by Galactic CR electrons: the emission is predicted extended. IC Models assumptions:

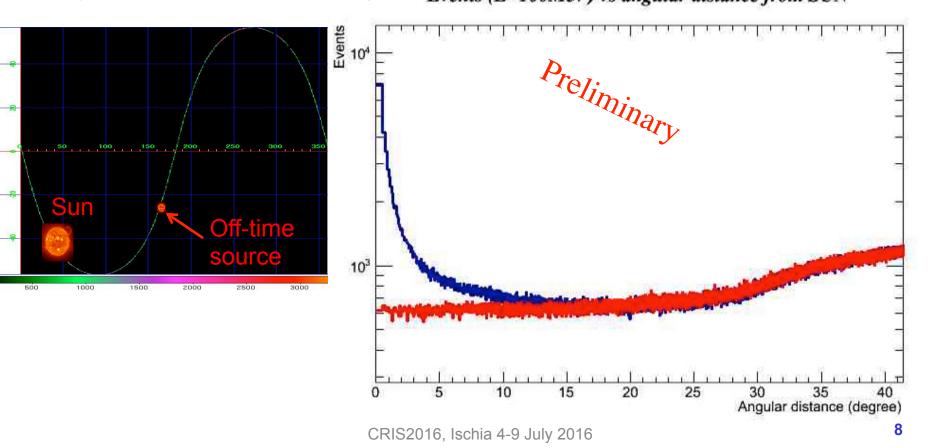
♦ Electrons are isotropic

Photons have a known radial angular profile

- ♦ Data sample: 7.5 years from August 4, 2008
- ♦ IRFs: P8R2_SOURCE_V6
- Sun centered data analysis
- ♦ Energy range: 50 MeV 30 GeV
- ♦ Zenith angle: <100°</p>

pace Telescope

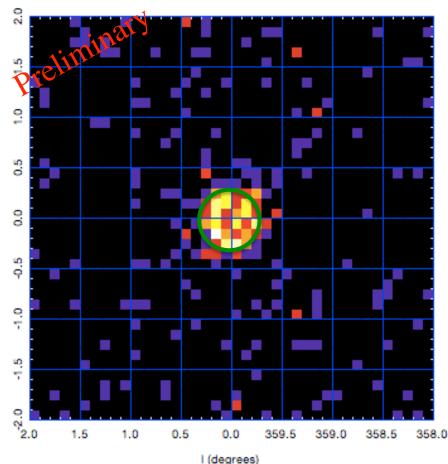
- ♦ Solar flares excluded
- \diamond Further selections:
 - ♦ Galactic plane cut: |b| >30°
 - Moon-Sun angular separation > 20°
 - \diamond Cut on bright sources with F(>100MeV) > 2 10⁻⁷ ph/cm²s



Background Estimation

The "off-time" source method:

An off-time source follows the path of the real source but at different times and at 90° distance (passes through the same areas in the sky but at different times) E_{vents} (E>100MeV) vs angular distance from SUN



High Energy Raw Data

Gamma-ray Space Telescope

2.3

Photons count map:

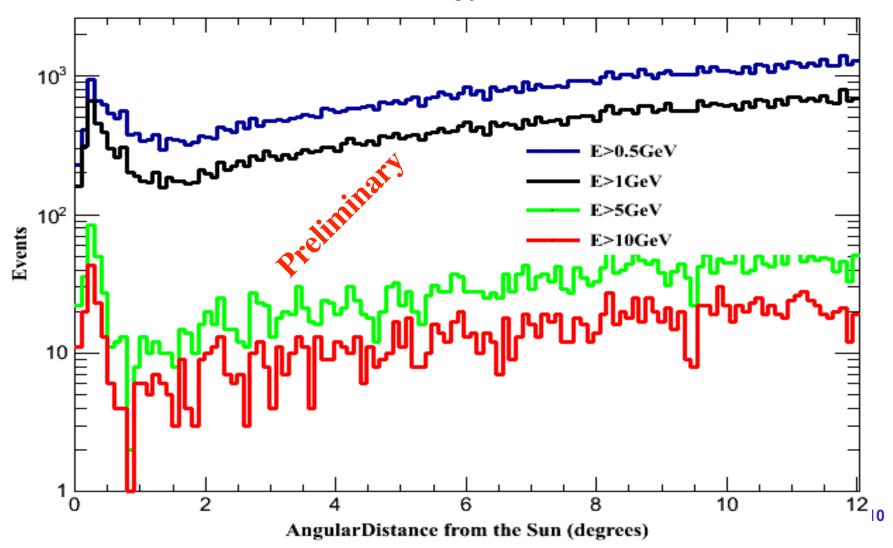
♦ E>10GeV
♦ 7.5 years data
♦ solar flares excluded

Coordinates are offsets from the Sun position in ecliptic coordinates.

The green circle represents the sun disk

0.81

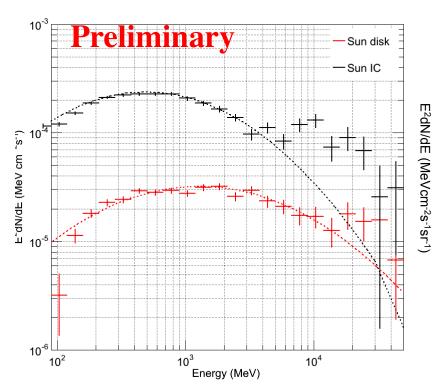
1.4


High Energy Raw Data

Sun events vs angular distance from the SUN for different energy thresholds

ermi

Gamma-ray Space Telescope


- \diamond Full 7.5 years, Pass 8 data sample
- Background model:
 - $_{\odot}$ Background from off-source masked near the solar disk
- Disk emission as point-like source (Log parabolic spectrum)
- \diamond IC emission from the SUN:
 - o Model independent:
 - generic 1/θ radial dependence fitted on data (θ= angular distance from Sun)
 - parametric energy spectrum

pace Telescope

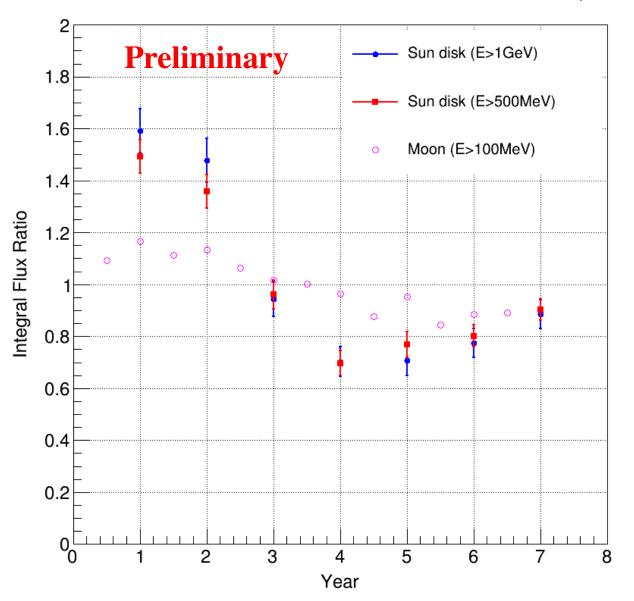
Spectral Energy Distribution

SED for each solar component in the first 3 years:

- The disk component is well fitted by a Log Parabola
- The IC emission is also well represented by a logparabolic function

Disk Integral Flux(E>100MeV) = (1.93 ± 0.07) 10⁻⁷ ph cm⁻²s⁻¹

Sun IC Integral Flux (E>100MeV) = (2.02±0.02)10⁻⁶ ph cm⁻²s⁻¹sr⁻¹


Solar disk emission trend in the first 7 years of data taking for

- E>1 GeV

Gamma-ray Space Telescope

- E> 500 MeV

Superimposed the lunar flux ratio trend above 100 MeV

IC emission models

Gamma-ray Space Telescope

IC radial profile integrated over 30 MeV-30 GeV energy range according to two different models:

Stellarics package (arxiv:1307.6798v1) and Moskalenko model

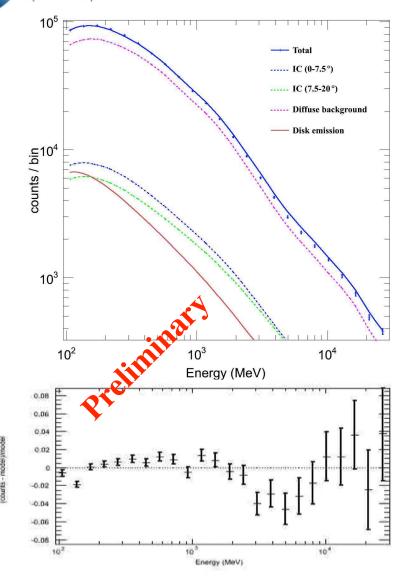
10⁻³ Stellarics 400MV 10-4 Stellarics 600MV Stellarics mode Stellarics 800MV Moskalenko model loskalenko 400 MV oskalenko no modulatio 10-4 E²Flux (MeVcm ⁻²s⁻¹) 10-5 10⁻⁵ 10-6 10-6 10^{3} 10^{4} 2 4 8 10 12 14 16 18 20 10^{2} 10⁵ Energy (MeV) Angular distance (degrees)

Radial profile as a function of the distance from the Sun for the same models

Currently we have considered a very simplified data modeling consisting of IC model, a disk emission plus background. This analysis is in progress and model description will be improved but some indications are provided:

- The disk component has a total flux similar to that published on the first analysis
- The IC profile seems to be similar to what predicted by the models
- The solar disk component demonstrates a clear trend in anticorrelation with solar activity.

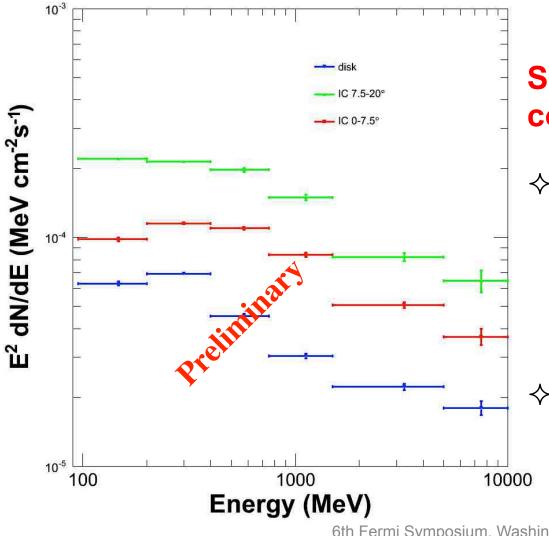
We are finalizing this analysis to confirm these results, complete the analysis on the solar modulation and study the systematics



Back-up slides

Analysis Results

Gamma-ray Space Telescope


- Fit results using a model with:
- ♦ Background
- ♦ Disk emission (PL spectrum)
- IC components (model independent) evaluated over two regions:
 - ♦ Inner up to 7.5° from the Sun
 - Outer from 7.5 to 20° from the Sun

IC Total flux:

IC (total): (1.91±0.01)•10⁻⁶ cm⁻²s⁻¹

Gamma-ray Space Telescope

SED for each solar component (6years):

the inner-outer part of the IC emissions have different spectra at low energies and the same slope above about 250 MeV.

The disk component differs
 from a perfect power-law

6th Fermi Symposium, Washington DC, Nov. 9-13, 2015 N.Giglietto

SED