

CTA Status & Perspectives

- A New Era in Gamma Ray Astronomy -

Johannes Knapp, DESY for the CTA Consortium

CRIS 2016, Ischia

Contents:

- > Gamma-ray astronomy with Cherenkov telescopes
- > Science Case
- > The CTA concept
- > CTA status & perspectives

Cosmic rays, gamma rays and neutrinos come likely from the same sources

"multi-messenger astrophysics"

but gamma rays are currently the most "productive" messengers.

γ,V

point back to sources (good for astronomy) but serious backgrounds

pick them out of the CR background point back at sources

< 100 GeV: direct observations on satellites</p>
Via direct identification

> 100 GeV: indirect observations via air showers

> Via shower shape, muon content or via localised excess of events from certain sky positions

IACTS

Imaging Atmospheric Cherenkov Telescopes

(most sensitive instruments for gamma ray astronomy)

30 GeV 300 TeV

only in dark nights (10% duty cycle) require good knowledge of atmosphere

Fast charged particles in shower produce Cherenkov light. (forward emission)

air shower

"Photograph" (ns) shower with imaging telescopes.

Reconstruct identity $(\gamma, p, ...)$ and energy of primary and direction to source.

Cherenkov light

eff. detector size: $\sim 10^5 \text{ m}^2$

MAGIC

Current Imaging Cherenkov Telescopes

7

Science Areas:

Cosmic energetic particles

Origin of the galactic cosmic rays Also UHECR signatures Role of ultra-relativistic particles in in clusters of galaxies, AGN, Starbursts... The physics of (relativistic) jets and shocks

Fundamental Physics

Dark Matter annihilation / decay Lorentz Invariance violation

Cosmology cosmic FIR-UV radiation, cosmic magnetism

TeV astronomy highlights

from HESS, MAGIC and VERITAS Descartes & Rossi Prize for HESS

Supernova remnants:	Nature	432 (2004) 75	
Microquasars:	Science	309 (2005) 746	Science 312 (2006) 1771
Pulsars:	Science	322 (2008) 1221	Science 334 (2011) 69
Galactic Centre:	Nature	439 (2006) 695	Nature 531 (2016) 476
Galactic Survey:	Science	307 (2005) 1839	
LMC:	Science	347 (2015) 406	
Black Holes:	Science	346 (2014) 1080	
Starbursts:	Nature	462 (2009) 770	Science 326 (2009) 1080
Active Galactic Nuclei:	Science	314 (2006) 1424	Science 325 (2009) 444
EBL:	Nature	440 (2006) 1018	Science 320 (2008) 752
Dark Matter:	PRL	96 (2006) 221102	PRL 106 (2011) 161301
	PRL	4 (20 5) 08 30	PRL 110 (2013) 41301
Lorentz Invariance:	PRL	101 (2008) 170402	
Cosmic Ray Electrons:	PRL	101 (2008) 261104	

+ many papers in other journals ... a booming field.

Supernovae produce TeV Y rays

H.E.S.S. Nature 432 (2004) 75

RX J1713.7-3946

a supernova remnant shell

Supernova Remnant RX J1713.7-3946

Galactic centre

H.E.S.S. Nature 439 (2006) 695

CRs interact with molecular clouds

Supernova Remnant G0.9+0.1

HESS J1745-290 (The Galactic Centre)

Emission along the Galactic Plane

Mystery Source HESS J1745-303

A PeV-atron in our Galactic centre (?)

H.E.S.S.. Nature 531 (2016) 476

data from 2004-15

Very hard spectrum, no indication of cutoff

requires protons of $\geq 10^{15} \text{ eV}$, i.e. a **PeV-atron**

Variability

BL Lac object z = 0.116bursts on minute scales $\Gamma \ge 100$ are required for a single zone SSC

Gamma Rays are ubiquitous:

many sources / source types complex structures in space, time and energy

test extreme end of high-energy phenomena complement observations at longer wavelengths with other particles

The Imaging Atmospheric Cherenkov technique is not yet at its limit:

Big improvements are possible with existing technology.

The future with

CTA is the global, next-generation project with largely enhanced performance and energy range two observatories (South and North),

probing the extreme universe with huge potential for high-energy astronomy and fundamental physics.

cherenkov telescope array

12 m

full-sky coverage (2 observatories). **IOx** more sensitive than current instruments, much wider energy coverage and field of view, substantially better angular and energy resolution.

Telescopes + array control + data analysis + infrastructure + \approx 300 M€ total invest + 100 M€ manpower

3 Telescope sizes for a wide energy range:

High-energies 10 km² area at 5-300 TeV 70 SSTs (4 m)

30 GeV ... 300 TeV

Not to scale !

The Gamma-Ray Horizon

 $\gamma_{\vee HE} + \gamma \longrightarrow e^+e^-$

One observatory with two sites

Chíle 🧧

-30°

míd latítude, large, flat area, ~2 km altítude, good seeíng, easy access, ...

Cerro Paranal Very Large Telescope

Paranal, Chile (ESO site, Atacama desert)

Vulcano Llullaillaco 6739 m, 190 km east

Cerro Armazones E-ELT

> Proposed Site for the Cherenkov Telescope Array

Baseline Arrays

South: 4 LSTs 25 MSTs 70 SSTs

North: 4 LSTs 15 MSTs

to scale

mainly low energies

full energy range

Sensitivity to point sources

3 telescope sizes for a wide energy coverage

... allows study of morphologies

M 82

Hydra A

Cen A

CTA observation modes

deep field

monitoring

deep field

survey mode

(Steady sources)

Variability and Short-Timescale Phenomena (flares, GRBs, ... all sorts of transients)

Current Galactic VHE sources (with distance estimates) HESS CTA visibility for 1% Crab sources

CTA will be the ultimate instrument ...

... for surveys ~400x faster than H.E.S.S.

... for transients at 25 GeV, 10⁴x better than Fermi

Multi-Messenger Physics:

Radio optical X-rays Gamma rays (keV-GeV) Fermi, DAMPE, ... (TeV)

LOFAR, SKA, ALMA, ... VLT, GMT, eELT, LSST, ... SWIFT, XMM, SVOM, ... HAWC, CTA

neutrinos gravitational waves

IceCube/Gen2, KM3net Adv Ligo, KAGRA, Ligo-India

many complementary / contemporary experiments

a rich harvest ...

galactic disc: long. ±90 deg lat. ±5 deg

galactic + extragalactic: \geq 1000 sources

Source Number

Ground-based gamma ray astronomy becomes "mainstream".

Tadashi Kifune

MST Prototype

DESY Zeuthen

France / Spain

MPIK Heidelberg

MST Schwarzschild-Couder dual mirror USA

9.7 m primary
5.4 m secondary
5.6 m focal length, f/0.58
1328 x 0.07° SiPMT pixels

Large Size Telescope Prototype

Ground breaking on La Palma

SST Prototypes

dual mirror telescope

at Cracow

on Sicily

Tels. technical data

Telescope	Large	Mec	lium	Small			
	LST	MST	SCT	SST-1M	ASTRI SST-2M	GCT SST-2M	
Number North array	4	15	TBD				
Number South array	4	25	TBD				
Optics							
Optics layout	Parabolic mirror	Davies-Cotton	Schwarzschild- Couder	Davies-Cotton	Schwarzschild- Couder	Schwarzschild- Couder	
Primary mirror diameter (m)	23	13.8	9.7	4	4.3	4	
Secondary mirror diameter (m)	-	-	5.4	-	1.8	2	
Eff. mirror area after shadowing (m ²)	368	88	40	7.4	6	6	
Focal length (m)	28	16	5.6	5.6	2.15	2.28	
Focal plane instrumentation							
Photo sensor	PMT	PMT	silicon	silicon	silicon	silicon	
Pixel size (degr.), shape	0.10, hex.	0.18, hex.	0.07, square	0.24, hex.	0.17, square	0.15-0.2, square	
Field of view (degr.)	4.5	7.7/8.0	8.0	9.1	9.6	8.5 - 9.2	
Number of pixels	1855	1764/1855	11328	1296	1984	2048	
Signal sampling rate	GHz	250 MHz / GHz	GHz	250 MHz	S&H	GHz	
Structure							
Mount	alz-az, on circular rail	alt-az positioner	alt-az positioner	alt-az positioner	alt-az positioner	alt-az positioner	
Structural material	CFRP / steel	steel	steel	steel	steel	steel	
Weight (full telescope, tons)	100	85	~85	9	15	8	
Max. time for repositioning (s)	20	90 90 60		80	60		

CTA Consortium

Argentina, Armenia, Australia, Austria, Brazil, Bulgaria, Canada, Chile, Czech Republic, Croatia, Finland, France, Germany, Greece, India, Italy, Ireland, Israel, Japan, Mexico, Namibia, Netherlands, Norway, Poland, Slovenia, Spain, South Africa, Sweden, Switzerland, Thailand, UK, Ukraine, USA

CTA Consortium: CTAO GmbH:

institutes from 33 countries >1300 persons

have the relevant know-how

deliver components as in-kind contributions (investments and man-power)

do the science

CTA legal entity

(all contractual matters, Shareholders: countries who fund CTA, Council makes decisions)

manages construction and

operation of CTA

runs project office, headquarters, science data centre and the observatory sites

Founded in summer 2014

Shareholders:

Austria (Univ. Innsbruck) Czech Rep. (Acad. of Sciences) France (CNRS, CEA) Germany (DESY, MPG) Italy (INAF) Japan (ICRR) Spain (IAC) Switzerland (Univ. Zürich) UK (STFC) list is growing

Associated:

Netherlands South Africa Sweden

Timeline:

CTA Headquarters and Science Data Centre

decision: 14 June 2016

CTA Headquarters for Admin and observatory operations

INAF Bologna, Italy

CTA Science Data Centre for science operations and science products

DESY Zeuthen/Berlin, Germany

CTA Phases

We are (still) in the Pre-construction Phase. Current priorities:

Prepare site(s) for pre-production telescopes Get pre-production telescopes on site

MoU in preparation to allow start of pre-construction in 2017, followed soon by **International Convention**.

Pre-production phase (~10% telescopes)

Final 'learning phase' 'Consortia' install telescopes CTAO oversees/helps/learns

Production phase (~90% telescopes)

'mass production phase' CTAO installs telescopes using contractors 'Consortia' oversee/help

CTA as an "Open Observatory"

initial proprietary time (\approx 50%): for "Key Science Projects" open for proposals (from scientist of participating countries)

Science Preparations

CTA science working groups:

- I Galactic science SNRs
 - PWNs pulsar binaries other gal. sources
- 2 Cosmic Rays

molecular clouds diffuse emission normal galaxies starburst galaxies galaxy clusters cosmic nuclei cosmic electrons

3 Extragalactic Science blazers non-blazer AGNs other extragalactic sources intergalactic mag fields extragalactic background light 4 Transient

galactic transients extragalactic transients GRBs multi-messenger studies

- 5 Dark Matter & exotic physics dark matter axions Lorentz invariance violation
- 6 Intensity interferometry

Main Science Themes:

Cosmic Particle Acceleration

- Particle acceleration
- Particle propagation
- Impact of rel. particles on their environment

Probing Extreme Environments

- Processes close to neutron stars and black holes
- Processes in relativistic jets, winds and explosions
- Cosmic voids

Physics frontiers

- Nature & distribution of Dark Matter
- Lorentz-Invariance at high energies
- Axion-like particles
- Exotics

Use of Observation Time ?

initially: commissioning

proprietary time for Consortium members contributing to construction of CTA ~50% for a few years, pooled together for "Key Science Projects"

open time (for scientists from CTA countries), proposal driven \sim 50% growing with time

All data become public after a proprietary period (~lyr)

Criteria for KSPs:

- I. Excellent scientific case with clear advance beyond the state of the art
- 2. The production of legacy data-sets of high value to a wider community
- 3. Clear added value of doing it as a KSP (rather than as part of the open-time observation)
 - need of large observing times (which are difficult to obtain in the open time)
 - need of a coherent approach across multiple targets or pointings
 - need of consortium expertise due to technical difficulty of the required analysis

CTA Key Science Projects

Key Science Projects

Theme		Question	Dark Matter Programme	Galactic Centre Survey	Galactic Plane Survey	LMC Survey	Extra- galactic Survey	Transients	Cosmic Ray PeVatrons	Star-forming Systems	Active Galactic Nuclei	Galaxy Clusters
Understanding the Origin and Role of Relativistic Cosmic Particles	1.1	What are the sites of high-energy particle acceleration in the		~	~~	~~	~~	~~	~	~	~	~~
	1.2	What are the mechanisms for cosmic particle acceleration?		~	v	~		~~	~~	~	~~	~
	1.3	What role do accelerated particles play in feedback on star formation and galaxy evolution?		~		~				~~	~	~
Probing Extreme Environments	2.1	What physical processes are at work close to neutron stars and black holes?		~	~	~			~~		~~	
	2.2	What are the characteristics of relativistic jets, winds and explosions?		~	~	~	~	~	~~		~~	
	2.3	How intense are radiation fields and magnetic fields in cosmic voids, and how do these evolve over cosmic time?					~	~			~~	
Exploring Frontiers in Physics	3.1	What is the nature of Dark Matter? How is it distributed?	~~	~~		~						~
	3.2	Are there quantum gravitational effects on photon propagation?						~~	~		~~	
	3.3	Do Axion-like particles exist?					~	~			~~	
	Surveys							Targets				

CTA is a new, powerful observatory for ground-based gamma-ray astronomy

- has a huge science potential (for a moderate price)
- offers an attractive mix of discovery potential and a wealth of "guaranteed" good astrophysics,
- complements data from other wavelengths / messengers
- is almost production ready,
- first funding is in hand / construction start very soon ...

CTA will considerably advance our knowledge on high-energy astrophysics and cosmic accelerators.

More Details:

general info: <u>www.cta-observatory.org</u>

"Design Concepts for the **Cherenkov Telescope Array**"

120 pages Exp. Astronomy 32 (2011) 193-316

"Seeing the High-Energy Universe with the Cherenkov Telescope Array"

24 articles, 356 pages Astroparticle Physics 43 (2013) 1-356

CTA Contributions to the 34th ICRC 2015, Den Haag

60 papers arXiv:1508.05894