PARTICLE PHYSICS AND COSMOLOGY WITH H.E.S.S.

Pierre Brun (Irfu, CEA Saclay)

July 2016 – CRIS, Ischia

H.E.S.S. TELESCOPES

- ★ 5°x 5° field of view
- ★ ~50 GeV 100 TeV
- ★ 0.1° angular resolution
- ★ 10-15% energy resolution
- ★ Large background : Fov-scale diffuse emission very difficult

GAMMA-RAY SOURCES

HESS observes a variety of sources

- → Galactic : supernova remnants, pulsars, ...
- → Diffuse emission
- → Extragalactic : blazars, starburst galaxies

ASTROPARTICLE PROGRAM W/ H.E.S.S.

- ★ Searches for WIMP dark matter
 - → Galactic center
 - → Dwarf galaxies
 - → Search for lines
- ★ Measurement of the extragalactic diffuse light
- ★ Axions from mixing w/ photons around AGNs
- ★ Tests of Lorentz invariance
- ★ Cosmic ray spectra

Will focus on new results

WIMP DARK MATTER

DM is required to understand results from cosmological probes

e.g. CMB anisotropies/structure formation

⇒ 84% of *non baryonic* dark matter

Standard Model _______ New symmetries > WIMP candidate photon

Primordial *self-annihilations* regulate cosmological density

Annihilation Processes

★ DM particle collisions produce standard particles

→ Quarks, leptons, gauge bosons

Mass ⇔ momentum

★ Standard particles produced at high energy
→ Further decay and hadronization

Include photons with energy ~DM mass

WHERE TO SEARCH FOR DARK MATTER?

- Galactic center 🖓
- Galactic halo 🗇
- Clumps with baryons (dwarf galaxies)
- Bare clumps

GALACTIC CENTER REGION

★ 10 years of observations, powerful central source

H.E.S.S. Collab., Nature 531, 476 (2016)

★ Not dark matter dominated emission :

- → 2006 : central source not dark matter H.E.S.S. Collab., PRL 97, 221102
- → 2011 : constraints from halo H.E.S.S. Collab., PRL 106, 161301
- → 2008, 2011 : limits on IMBHs & clumps ^{H.E.S.S.} Collab., PRD 78, 072008 P.B. et al., PRD 83, 015003
- → 2015 : limits from halo w/ cored profile H.E.S.S. Collab., PRL 114, 081301
- → 2016 : improved limits from halo

SEARCHES IN THE GC VICINITY

★ Most advanced analysis

→ Halo, w/ morphological & spectral likelihood

★ Best limits w/ ground telescopes, submitted to PRL

LIMITS ON DARK MATTER PARAMETERS

V. Lefranc, ICRC 2015

Extragalactic Background Light

P. Brun, Ischia, July 2016

Extragalactic Background Light

P. Brun, Ischia, July 2016

FIRST MEASUREMENT

Assuming a SED, fit of the background photon density

$$\alpha_0 = 1.27^{+0.18}_{-0.15 \text{ stat}} \pm 0.25_{\text{syst}}$$

MODEL-INDEPENDENT APPROACH With minimal assumptions on the EBL SED

★ Essential step to search for second-order effects

- → Cascade & primordial magnetic fields
- \rightarrow Axions (now searched for by other means)
- → Lorentz invariance violation

TESTS OF LORENTZ INVARIANCE

★ Lorentz invariance breaking in photon sector

$$E_{\gamma}^2 = p_{\gamma}^2 \pm E_{\gamma}^2 \left(\frac{E_{\gamma}}{E_{LIV}}\right)^n$$

- ★ Would induce energy-dependent time lags
- ★ Here another approach : threshold distortions

LORENTZ INVARIANCE W/ SPECTRA

	2σ	3 σ	5 σ
n=1	$2.8 \times 10^{28} \text{ eV} (2.29 \times \text{E}_{\text{Planck}})$	$1.9 \times 10^{28} \text{ eV} (1.6 \times \text{E}_{\text{Planck}})$	$1.04 \times 10^{28} \text{ eV} (0.86 \times \text{E}_{\text{Planck}})$
n=2	$7.5 \times 10^{20} \text{ eV}$	$6.4 \times 10^{20} \text{ eV}$	$4.7 \times 10^{20} \text{ eV}$

Planck scale excluded for linear term Best limit for quadratic term

M. Lorentz

& P.B.,

RICAP 2016

OTHER RESULTS

- * Combined dwarf-galaxy dark matter search
 - H.E.S.S. Collab., PRD 90, 112012 (2014)
- ★ Dark matter lines H.E.S.S. Collab., PRL 110, 041301 (2013) Update & Fermi hot spot : Submitted, M. Kieffer ICRC 2015
- ★ Lorentz invariance w/ time lags
 - → PKS 2155-304 ^{H.E.S.S.} Collab., PRL 101, 170402 (2008) H.E.S.S. Collab., Astropart. Phys. 34, 738 (2011)
 - → PG 1553 H.E.S.S. Collab., ApJ 802, 65 (2015)
 - → Vela pulsar M. Chrétien, ICRC 2015
- ★ Axion-like particles H.E.S.S. Collab. PRD 88, 102003 (2013)
- * Microscopic black holes J-F. Glicenstein, ICRC 2013

★ Electron spectrum H.E.S.S. Collab., A&A 508, 561 (2009) H.E.S.S. Collab., PRL 101, 261104 (2008) Expect an update soon !

P. Brun, Ischia, July 2016

Still a lot more soon !