PARTICLE PHYSICS AND COSMOLOGY

WITH H:E.S.S.

-Pierre Brun
(Irfu, CEA Sáclay)
QRI July 2016 -CRIS, /schia
H.E.S.S. TELESCOPES

* $5^{\circ} \times 5^{\circ}$ field of view
* ~50 GeV - 100 TeV
* 0.1° angular resolution
* 10-15\% energy resolution
* Large background : Fov-scale diffuse emission very difficult

GAMMA-RAY SOURCES

HESS observes a variety of sources
\rightarrow Galactic : supernova remnants, pulsars, ...
\rightarrow Diffuse emission
\rightarrow Extragalactic : blazars, starburst galaxies

See related talks by G. Puehlhofer, F. Aharonian, F. Brun

Astroparticle Program w/ H.E.S.S.

* Searches for WIMP dark matter
\rightarrow Galactic center
\rightarrow Dwarf galaxies
\rightarrow Search for lines
* Measurement of the extragalactic diffuse light * Axions from mixing w/ photons around AGNs * Tests of Lorentz invariance ^ Cosmic ray spectra

Will focus on new results

^ ...

DM is required to understand results from cosmological probes
e.g. CMB anisotropies/structure formation

CMB very homogeneous :

$$
\delta \rho / \rho=10^{-5}
$$

\exists galaxies : $\delta \rho / \rho \gg 1$
$\Rightarrow 84 \%$ of non baryonic dark matter

Primordial self-annihilations regulate cosmological density

ANNIHILATION PROCESSES

^ DM particle collisions produce standard particles
\rightarrow Quarks, leptons, gauge bosons

Mass \Leftrightarrow momentum

* Standard particles produced at high energy
\rightarrow Further decay and hadronization

Include photons with energy ~DM mass

Where to Search for Dark Matter?

GALACTIC CENTER REGION

* 10 years of observations, powerful central source

* Not dark matter dominated emission :
$\rightarrow 2006$: central source not dark matter h.E.S.S. Collab., PRL 97, 227102
$\rightarrow 2011$: constraints from halo h.e.s.s. Collab., PRL 106, 161301
$\rightarrow 2008,2011$: limits on IMBHs \& clumps H.E.S.S. Collab., PRD 78, 072008
2008, 2011 : limits O. P. et al., PRD 83, 015003
$\rightarrow 2015$: limits from halo W/ cored profile h.E.S.S. Collab., PRL 114, 081301
$\rightarrow 2016$: improved limits from halo

SEARCHES IN THE GC VICINITY

* Most advanced analysis
\rightarrow Halo, w/ morphological \& spectral likelihood

^ Best limits w/ ground telescopes, submitted to PRL

Limits on Dark Matter Parameters

V. Lefranc, ICRC 2015

EXTRAGALACTIC BACKGROUND LIGHT

Background UV/IR photons

men

Pair production induces a gamma-ray horizon $z \simeq 0.1$ at 1 TeV

EXTRAGALACTIC BACKGROUND LIGHT

FIRST MEASUREMENT

Assuming a SED, fit of the background photon density

$$
\alpha_{0}=1.27_{-0.15 \mathrm{stat}}^{+0.18} \pm 0.25_{\text {syst }}
$$

MODEL-INDEPENDENT APPROACH

* With minimal assumptions on the EBL SED

* Essential step to search for second-order effects
\rightarrow Cascade \& primordial magnetic fields
\rightarrow Axions (now searched for by other means)
\rightarrow Lorentz invariance violation

TESTS OF LORENTZ INVARIANCE

* Lorentz invariance breaking in photon sector

$$
E_{\gamma}^{2}=p_{\gamma}^{2} \pm E_{\gamma}^{2}\left(\frac{E_{\gamma}}{E_{L I V}}\right)^{n}
$$

* Would induce energy-dependent time lags
* Here another approach : threshold distortions

$$
\begin{aligned}
& s \rightarrow s \pm \frac{E_{\gamma}^{n+2}}{E_{L I V}^{n}} \\
& \epsilon_{t h} \rightarrow \epsilon_{t h} \mp \frac{1}{4} \frac{E_{\gamma}^{n+1}}{E_{L I V}^{n}} \\
& 2014 \text { flare of Mrk } 501 \\
& \mathrm{z}=0.034
\end{aligned}
$$

Lorentz Invariance w/ Spectra

	2σ	3σ	5σ
$\mathrm{n}=1$	$2.8 \times 10^{28} \mathrm{eV}\left(2.29 \times \mathrm{E}_{\text {Planck }}\right)$	$1.9 \times 10^{28} \mathrm{eV}\left(1.6 \times \mathrm{E}_{\text {Planck }}\right)$	$1.04 \times 10^{28} \mathrm{eV}\left(0.86 \times \mathrm{E}_{\text {Planck }}\right)$
$\mathrm{n}=2$	$7.5 \times 10^{20} \mathrm{eV}$	$6.4 \times 10^{20} \mathrm{eV}$	$4.7 \times 10^{20} \mathrm{eV}$

Planck scale excluded for linear term

OTHER RESULTS

* Combined dwarf-galaxy dark matter search
H.E.S.S. Collab., PRD 90, 112012 (2014)

Update \& Fermi hot spot : Submitted, M. Kieffer ICRC 2015
* Lorentz invariance w/ time lags
\rightarrow PKS $2155-304_{\text {H.E.S.S. Collab., Astropart. Phys. } 34,738 \text { (2011) }}^{\text {H.E.S.S Collab., PRL 101, } 170402 \text { (2008) }}$
\rightarrow PG 1553 H.E.S.S. Collab., Apl 802,65 (2015)
\rightarrow Vela pulsar m. cretetien, ICRC2015

Still a lot more soon!

* Axion-like particles hess. Collob PRo 88, 102003 20133
* Microscopic black holes I.f.criensemen cecer2013

