
Direct CR Measurements 
Bruna Bertucci 
University & INFN Perugia 



The CR spectrum: the overall picture 
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Direct measurements: 
J Particle identification/Energy 
calibration, anti-matter 
L Space: Weight/Size constraints 
limit the energy range (< PeV)  

Indirect measurements: 
J  Ground: Extended energy 
    range (>PeV) 
L Pid/Energy : dependence on 
modelling of atmospheric 
interactions 

Energy 
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Multi probe/ Multimessenger 
approach !! 



The measurements 
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Solar wind particles 

Solar energetic particles 

Cosmic Rays 

Chemical composition The electron component 

Anti-matter  

Earth & Sun  

Sources 

ISM 

Propagation 

   New Physics? 



The experimental challenge 

7 

DIRECT ≠ EASY  ! 
No atmosphere: Stratospheric Balloons 

Space 

Limits on size and time: Detector design focused on specific 
measurements 



Stratospheric Balloons: 
 from few hrs to months 
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Kiruna 
Lynn Lake 

Palestine 
Fort Summer Sanriku 

McMurdo 

Syowa 

Kamtchatka 
IMAX92,BESS-TEV,BESS93-94-95-97-98-99-00, 
AESOP94-97-98-00-02-,CAPRICE94,HEAT95, RICH97, 
ISOMAX98.. 

TRACER 2006 RUNJOB 

BETS97-98 MASS91, SMILI-I, TS93,CAPRICE98, 
HEAT94,HEATPBAR.. 

BETS2004 

JACEE,BESS-PolarI/II, ATIC201-02-03, 
TRACER2003,CREAM-
I,CREAMII,TIGER,SUPER-TIGER 

JACEE,.. 

… 
BESS/POLAR/TEV (9 Flights)  
WIZARD (6,Flights) 
HEAT/PBAR (4,Flights) 

RUNJOB (62 day, 10 Flights) 
TRACER (18 days, 3 Flights) 
CREAM (161 days,6 Flights) 
ATIC (53 days, 3 Flights) 
TIGER/S-TIGER (2/55 days) 

Calorimetry, TRD +.. Magnetic Spectrometers 



Space:  

IMP series < GeV/n 
ACE-CRIS/SIS  Ekin < GeV/n 
VOYAGER-HET/CRS < 100 MeV/n 
ULYSSES-HET (nuclei)  < 100 MeV/n 
ULYSSES-KET  (electrons) < 10 GeV 
CRRES/ONR < (nuclei) 600 MeV/n 
HEAO3-C2 (nuclei) < 40 GeV/n 

Long missions (years) 
Small payloads 
Low energies.. 

CRRES VOYAGER 

ULYSSES 

HEAO ACE 
IMPJ 

Long missions 
Large payloads 

Short missions (days)/ Larger payloads 
 
 
 
 
 
 
 
 
 
 

CRN on Challenger  
(3.5 days 1985) 

AMS-01 on Discovery 
(8 days, 1998) 

PAMELA AMS-02 

Fermi-LAT 

DAMPE  CALET 



ACE/CRIS  
&  

Super Tiger 
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Orbiting in L1  
since 1997 

(or David and Goliath..) 



ACE/Cosmic Ray Isotope Spectrometer (CRIS) 
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A ≈ 250 cm2 sr instrument flying on the Advanced Composition Explorer since  
1997 à ≈ 0.5 m2 sr yr  

CRIS measures dE/dx and total energy of 
cosmic rays stopping in a stack of silicon 
solid-state detectors to determine the 
particles’ charge & mass.  
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Super-TIGER : Trans-Iron Galactic Element Recorder 
a balloon borne detector in polar flight for 55 days 
Acceptance ≈ 8m2sr : total exposure ≈ 1m2 sr yr   
E>0.8 GeV/nucleon 
 

>2 years to recover it 
...buried under 2 meters  
of snow... 
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Question:  
What is the source of the material that is accelerated and the mechanism 
for injecting that material into the cosmic-ray accelerator? 
 
Stellar atmospheres (most abundant  Low FIP vs High FIP abundances) 
vs interstellar dust (refractories & volatiles ) 

Elemental composition relative to Fe... 

Elemental ratios wrt to a:  
 20% massive stars /ejecta  80% SS  
refractory elements are accelerated most efficiently... 
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295 K of 56Fe  
15 60Fe (half-life 2.62 Myr)  

More info from radioactive Fe isotopes measurement in CRIS; 

60Fe/56 Fe : 
near earth = (4.4±1.6) 10-5 

@ acceleration (0.8±0.3)10-4 

≤ 10 Myr between nucleosynthesis & acceleration 
> 105 yr from the lack of 59Ni in CR 
CRs are not accelerated by the same SN in which are synthetized 
but must take place in regions, like OB associations, where two nearby 
supernovae in few Myr. 



Anti-matter? 
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Z>1  
positrons (and electrons) 
anti-protons 



Baryogenesis: a long standing question.. 

16 

“..We must regard it as an accident that the Earth (and presumably the whole 
solar  system),  contains  a  preponderance  of  negative  electrons  and  positive 
protons. It is quite possible that for some of the stars it is the other way about, 
these stars being built up mainly of positrons and negative protons..” 	


P.Dirac, Nobel Lecture 1933	
  
 



Sakharov way to an asymmetric universe... 
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Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe	


A. D. Sakharov, 1967 ( Pis'ma Zh. Eksp. Teor. Fis. 5, 32-35, JETP Lett 5, 24-27) 
 
The theory of the expanding universe, which presupposes a superdense initial 
state of matter, apparently excludes the possibility of macroscopic separation 
of matter from antimatter; it must therefore be assumed that there are no 
antimatter bodies in nature, i.e., the universe is asymmetrical with respect to 
the number of particles and antiparticles (C asymmetry). 
 
In particular, the absence of antibaryons and the proposed absence of baryonic 
neutrinos implies a nonzero baryon charge (baryonic asymmetry). 
 
 We wish to point out a possible explanation of C asymmetry in the hot model of 
the expanding universe  by making use of effects of CP invariance violation [2]. 
… 



The quest for primordial antimatter 
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Thus, we have ruled out a B = 0 universe with domains smaller than a size	


comparable to that of the visible universe. It follows that the detection of	


Z > 1 antinuclei among cosmic rays would shatter our current understanding	


of cosmology, or reveal something unforeseen in the realm of astrophysical	


objects. 
Cohen, De Rujula, Glashow Astrophys.J.495:539-549,1998 

1)  β is constant and the universe is 100% matter dominated	


2)  The universe is globally baryo-symmetric	


	



	


3)  The universe has non-vanishing average baryonic charge, but β is not 

spatially constant....in other words there could be lumps of antimatter in a 
matter dominated universe.	



à Anti-nuclei from anti-stars  

C.Bambi, A.D. Dolgov, Nuclear Phys. B 784 (2007) 132-150	
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Balloon borne Experiment with Superconducting Spectrometer 
BESS: 9 flights between 1993 and 2004 

BESS-TeV 
MDR 1.4 TV 

- large solenoidal thin-wall superconducting magnet:  0.3 m2sr, 0.8 T 
-  a time-of-flight system of scintillation counter hodoscopes 
-   inner drift chambers (IDC) 
-   a jet-type drift particle-tracking chamber 
-  outer drift chambers / aerogel Cherenkov counter depending on the 

configuration 

BESS-Polar 
MDR 240 GV  
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Alpha  Magnetic Spectrometer on STS-91 
  AMS-01 (1998) 

 



 
 
 
Payload for Matter/Antimatter Exploration and 
Light nuclei Astrophysics - PAMELA 
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Launch from Baykonur  

•  PAMELA on board of Russian satellite Resurs DK1 
•  Orbital parameters:   

-  inclination ~70o (⇒ low energy) 
-  altitude ~ 360-600 km (elliptical)  
-  active life >3 years (⇒ high statistics)  

à Launched on 15th June 2006 
à PAMELA in continuous data-taking mode for 10 years  



The detector 
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GF: 21.5 cm2 sr                
Mass: 470 kg 
Size: 130x70x70 cm3 

Power Budget: 360W  

Spectrometer  
microstrip silicon tracking system   +   permanent magnet 
It provides:  

- Magnetic rigidity  à  R = pc/Ze  MDR≈1(0.25) TV 
-  Charge sign 
-  Charge value from dE/dx 

Time-Of-Flight 
plastic scintillators + PMT: 
-  Trigger 
-  Albedo rejection; 
-  Mass identification up to 1 GeV; 
- Charge identification from dE/dX. 
 
 
Electromagnetic calorimeter 
W/Si sampling (16.3 X0, 0.6 λI)  
-  Discrimination e+ / p,  anti-p / e-  
 (shower topology) 
-  Direct E measurement for e- 

 
 
Neutron detector 
36 He3 counters : 
-  High-energy e/h discrimination 
 

+           - 
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Alpha  Magnetic Spectrometer on the ISS: AMS-02 

à Launched on May 16, 2011 
à Installed on ISS May 19, 2011 
à AMS-02 foreseen to operate for the entire ISS lifetime 

5m x 4m x 3m 
7.5 tons 
GF ≈ 0.5 m2sr 
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Transition Radiation Detector 
Identify  electrons 
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Electromagnetic Calorimeter        
E of electrons 

Ring Imaging Cherenkov  
 Z, E 

Time of Flight  
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Par%cles	
  are	
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  by	
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charge	
  (Z)	
  and	
  energy (E) or momentum (P) 

 The Charge and Energy (momentum) 
are measured independently by many 

detectors 

 Magnet 
±Z 
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AMS-02: the detector 
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Anti-He/He 
differential upper limit with 6.3 M He events collected in PAMELA 



Anti-He/He 
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Waiting for AMS-02 ...... 



Anti-matter? 
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Z>1 Anti-matter 
positrons (and electrons) 
anti-protons 



Sun 

χ
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The quest for Dark Matter  
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SNR 

Sun 

p, He,C..,e- 

π±  à µ± à e±!

p+pà p+p… 

χ	



χ	



e-, p,γ	



e+,!p, γ	



The Cosmic Background: 
 
Origin, propagation and 
production of CRs and their 
secondaries 
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Cosmic Rays Flux"

Ref: B Beischer et al 2009 
New J. Phys. 11 105021"
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2008-2009: the e+/e- puzzle   
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ATIC  

PAMELA  

FERMI  



The actual status (not the end of the story) 
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10.9 million e+ and e- events 



e+/e- fluxes 
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e++e- fluxes 
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Waiting for new results 
 from: 



Anti-protons? 
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Z>1 Anti-matter 
positrons (and electrons) 
anti-protons 
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Anti-proton/proton : the early times (1984)  
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Anti-proton/proton : 2001 
HEAT ≈ 70 events  
CAPRICE ≈ 31 events 



Anti-proton/proton : 2010  
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Kinetic Energy  (GeV) 

BESS-POLAR (2004) ≈ 1520 event < 4.2 GeV 
PAMELA (2006-2009) ≈ 1500 events  



Anti-protons: 2016 
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The accuracy of the latest measurement challenges 
current knowledge of  cosmic background ! 



SNR 

Sun 

p, He,C..,e- 

π±  à µ± à e±!

p+pà p+p… 
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e+,!p, γ	



The Cosmic Ray background.. 
 
ü Origin, acceleration 
ü propagation & ISM 
ü  the Sun/Earth effects... 
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AMS 

Charged CR flux 



Solar effects on CR 
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Voyager-1 
&  

the (un) modulated CR spectrum 

A long journey in planetary mission, 
(jupiter, saturn, titan), heliosphere and interstellar space.... 
 
In orbit from Sept.5 1977 : 
38 years ..9 months..and still counting (up to 2025...) 
@ 121 a.u. out from heliospheric effects ! 



First observation of CR in the LISM ! 
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Heliosphere shielding of  
75% GCR with E>70 MeV 
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CR protons 
 > 70 MeV 

Heliospheric  
ions 0.5-30 MeV/n 
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From the modulated to the unmodulated spectrum... 

H/He ≈ 12 , flat with energy : shape not due to solar modulation but to  
ionization losses : V-1 is not near the source ! 
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Solar effects on CR... 
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Solar effects on CR... 



Spectral features & composition .... 
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Spectral features & composition  
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Knee energy        Z  
light primaries at ~ 3 1015 eV 
heavy primaries at ~ 91016 eV 

/

•  Accelerators? 
•  Galactic vs extra-galactic  
•  features in the propagation... 



September 4, 
2015 
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PAMELA, Science 2011  

2.85 

2.67 
232 GV 

2.77 
2.48 

243 GV 

Breaks occur also at “low” energies… 

CREAM, APJ 2010, 2011 

Spectral features & composition  
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AMS-02 :  
the smooth change of spectral index 

AMS 2015 
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 Φp/ΦHe = C Rγ 

) [GV]R~Rigidity (
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Single power law fit (R>45 GV)

Traditional Models

Change of slope  
at ~45 GV 

 Φp/ΦHe = C Rγ 

Single power law fit (R > 45 GV) 



What about origin of spectral hardening? 
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Related to acceleration mechanisms at source? 
 
- distributed acceleration by multiple sources at the origin ? 
- non linear DSA ? 
- reacceleration by weak shocks in the Galaxy? 
 
Propagations effects? 
e.g. space and energy dependent diffusion coefficients? 
 
Effect of nearby young CR sources?  
 



What about origin of spectral hardening? 
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Related to acceleration mechanisms at source? 
 
- distributed acceleration by multiple sources at the origin ? 
- non linear DSA? 
- reacceleration by weak shocks in the Galaxy? 
 
Propagations effects? 
e.g. space and energy dependent diffusion coefficients? 
 
Effect of nearby young CR sources?  
 

Future promises more & more fun:  
precise data also on other primary/secondary species are coming; 
-  AMS released just a small part of his data...and will continue to run as the ISS 

will be operational (Oliva, later on) 
-  DAMPE (Bernardini, later on) 
-  HERD (Ambrosi, later on) 
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Cosmic Ray Observatory on ISS 
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CALET on ISS 

58 



CALET & e± 

59 



CALET & Nuclei 
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CALET & Nuclei 
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CALET & Nuclei 

62 



CALET & Nuclei 
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CALET & CR ... 
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CALET  
in 5 years? 



Conclusions 
ü  Stratospheric balloon program relevant for specific 

measurements (GAPS for anti-d ?..) 
ü  Space is giving an important contribution to direct CR 

measurements… 
ü  PAMELA did a great job… 
ü  AMS-02 is starting to release impressive results..and 

more will come in the next future 
ü CALET and DAMPE just launched... 

ü  in 10 years large acceptance space based calorimetric 
experiments insuring good overlap with ground based 
(indirect) measurements. Up to knee ? 

 
ü   Anti-matters matters ! A long term plan is needed (and is 

starting..) for a new antimatter large acceptance detector in 
orbit .. 



CaloCube (INFN gruppo V) 

• Exploit the CR isotropy to maximize the 
effective geometrical factor, by using all 
the surface of the detector (aiming to 
reach Ω = 4π)  
 
• The calorimeter should be highly  
isotropic and homogeneous 

SR2S (INFN and UE) 

• R&D of high temperature 
superconducting magnets (MgB2) for 
space applications  (T  ≈ 10÷20 °K)   

Materials	
  percentages:	
  
2tanium:	
  40%	
  

alluminium:	
  50%	
  

MgB2:	
  10%	
  
Quite	
  small	
  density:	
  ≈	
  3.4	
  g/cm3	
  	
  
	
  

CR 

CR 

CR 

CR 

A novel idea for a 
next generation 

cosmic ray 
experiment in 

space 

Assumption for the next slides:  
2000 kg for the calorimeter 
2000 kg for the magnetic material  

Work and slides by 
Paolo Papini, thanks! 



X 
Z 

X-Z 

Y 
X-Z 

Calorimeter diameter: 93.35 cm 
Calorimeter length: 96.8 cm 
External diameter: 350 cm 
Weight of the magnetic material: 
2000 kg 
Current density: 83.6 A/mm2 

Number of coils: 4 

Coils diameter: 18.65 cm 
Maximum field: 6.9 T 

Toroidal magnetic configuration 

Advantages of the toroidal configuration: 
•  Null Magnetic Moment 
•  Compensation coils not necessary 

The magnetic 
system should 
be optimized 
taking into 
account the 
relationship btw 
maximum current 
density and 
maximum B field 





6 detector’s planes 
with 10 µm resolution 



2 spire 3 spire 4 spire 

6 spire 8 spire 12 spire 

The number of coils can be optimized 



More coils à larger MDR 
More coils à smaller GFeff 

• MDR Distributions after cuts: 
– upper 2/3 of the acceptance 
– track in the spectrometer 
– track not crossing the magnetic material 

MDR: a way to estimate the performance in 
the antimatter detection 


