KM3NET HIGHLIGHTS

Piera Sapienza on behalf of the KM3NeT collaboration, CRIS 2016, Ischia

MOTIVATIONS & OBJECTIVES

The IceCube discovery of HE cosmic neutrinos enforces the physics case of a km³ neutrino telescope in the Mediterranean sea that surveys a large fraction of the sky including most of the galactic plane end the Galactic Centre

Galactic versus extra-galactic contribution in IceCube data

- quasi isotropic dominant component at high energy (E>100TeV) suggest extragalactic origin
- some hints for a galactic contribution at lower energy, but can be probed only marginally with IceCube and Antares

A much better angular resolution is achieved in deep sea w.r.t to ice

MOTIVATIONS & OBJECTIVES

KM3NeT is neutrino research infrastructure in the deep Mediterranean Sea

- discover and observe of high neutrino sources in the Universe (ARCA, off shore Capo Passero, It @ 3500 m depth)
- determine neutrino mass hierarchy (ORCA, off shore Toulon, Fr @2500 m depth)

Same collaboration, same technology, two installation sites

KM3NeT is in the ESFRI road map

In this talk I will mostly focus on ARCA and high energy neutrinos

Letter of Intent of KM3NeT

Recently published on Journal of Phys. G XXX

TECNOLOGICAL CHALLENGES

- Hostile environment due to huge pressure, corrosion, very limited accessibility, long duration experiment (> 10 years)
- Antares demonstrates that is possible to design, build, deploy and operate a deep see neutrino telescopes
- KM3NeT design takes profit of this experience, but a intense R&D program was necessary to develop technologies that could not be taken from Antares because of cost and increased size

KM3NET TELESCOPE DESIGN

- Detection principle Optical Cherekov radiation
 - 6 order of magnitude in energy (GeV-PeV)
 - All flavor detection
- A 3D array built with a modular design
- optical sensor: multi-PMT (DOM)
- vertical slender strings host 18 DOMs supported by two parallel ropes: Detection units (DU)
- Building blocks of 115 DUs each
- Power and data distributed by a single backbone cable with breakouts at DOMs
- Sea network of submarine cables and Junction Boxes connected to shore via a main e/o cable
- All data to shore

KM3NET ARCHITECTURE

DOM - Digital Optical Module

- 31 x 3" PMTs
- LED & acoustic piezo inside
- Tiltmeter/compass
- Gbit/s fibre DWDM
- Hybrid white rabbit
- Digital foton counting

17

- Directional information
- Wide angle of view
- Improved rejection cabability
- Compact and cost effective design: 1 DOM equivalent to 3 Antares OM

KM3NeT

DETECTION UNIT

18 DOM are integrated on a string and arranged on the LOM, mounted on the anchor and are ready for deployment

Compact structure Rapid deployment Autonomous unfurling Recoverable

Prototype validation in situ

Prototype DOM deployed at Antares site April 2013

Test of photon counting capabilities and directional sensitivity of DOM *Eur. Phys. J. C (2014)* 74:3056

Prototype DU (three DOMs) deployed in Capo Passero May 2014

Test of DU structure functionality Test of intra-DOM and inter-DOM calibration *Eur. Phys. J. C (2016)* 76:54

200

ARCA DETECTOR LAY OUT

ARCA: Astronomy Research with Cosmics in the Abyss

To be installed in the Italian site of the

KM3NeT infrastructure

115 detection units/building block

18 DOM per DU

Vertical DOM spacing 36 m

Inter-DU spacing 90 m

2 building blocks => instrumented volume 1 km³

ARCA: EVENT TOPOLOGIES AND DETECTOR RESPONSE

ARCA SENSITIVITY TO NEUTRINO DIFFUSE FLUX

Analysis for the track events:

• Track channel: analysis for up-going events based on Max. likelihood Pre-Cuts on $\theta_{zen} > 80^{\circ}$, Λ (reconstruction quality parameter), N_{hit} (number of hits -> parameter related to the muon energy) KM3NeT

P. Piattelli, Uulcano 24-5-2016

SENSITIVITY TO POINT-LIKE SOURCES – E^{-2} up going v_{μ}

ARCA can survey almost the whole scale with a discovery potential @ 50 about one order of magnitude better than IceCube for equivalent exposure

ANTARES upper limit for 1338 day also reported

SENSITIVITY TO POINT-LIKE GALACTIC SOURCES

DIFFUSE FLUX FROM THE GALACTIC PLANE

ARCA sensitivity to a flux from a region of the Galactic Plane near the Galactic Center Neutrino flux estimate based on a radially-dependent cosmic-ray transport properties

D. Gaggero et al., proceedings ICRC2015

Discovery at 5 σ significance (50% probability) in about 5 years

A PHASED APPROACH TOWARDS KM3 TELESCOPE

Phase	Blocks	Primary deliverables		
1	0.2	Proof of feasibility and first science results (7 ORCA strings/ 24 ARCA strings)		
2.0	2 ARCA	Study of neutrino signal reported by IceCube All flavor neutrino astronomy		
	1 ORCA	Neutrino mass hierarchy		
3	1+6	Neutrino astronomy including Galactic sources		

KM3NeT phase-1

Proof of feasibility of network of neutrino detectors:

- Funded with 31 million euro
- 31 detection units will be deployed in 2015-2017
- KM3NeT-It off shore Capo Passero 24 DUs
- KM3NeT-Fr off shore Toulon -7 DUs
- Three DUs deployed at Capo Passero site
 - one not working to be recovered by the end of July
- ARCA phase 1 will be the largest neutrino telescope in the Northern hemisphere (0.1 km³, i.e. 10 x Antares!)

The FirsT DU installed in situ 3500 m

TWO STRING EVENT

MEASURING NMH WITH ATMOSPHERIC NEUTRINOS IN THE DEEP SEA

Measurement of the Mass Hierarchy with atmospheric neutrinos passing through Earth in a deep sea Cherenkov detector at GeV energy

Oscillation signal enhanced at resonance energy in matter

Very challenging experiment...

ORCA DETECTOR LAY OUT

ORCA: Oscillation Research with Cosmics in the Abyss

To be installed in the French site of the KM3NeT infrastructure at 2500 m depth

One building block with 115 detection units

18 DOM per DU

Vertical DOM spacing 9 m

Inter-DU spacing 20 m

```
Instrumented volume \approx7 Mton<sub>6 m</sub>
```

First ORCA string to be deployed in 2016

NMH EXPERIMENTAL SIGNATURE

Both muon- and electron-channels contribute to net hierarchy asymmetry Electron channel more robust against detector resolution effects

24

 $\theta_{\rm Z}$

ORCA: NMH SENSITIVITY

Full MC production Trigger simulation, track and shower reconstruction included Particle identification and muon background taken into account Major systematics investigated Vertical distance optimized (9m)

Still to be done Exploit inelasticity Improve reconstruction

ORCA is a very competitive experiment within a window of opportunity

CONCLUSIONS AND PERSPECTIVES

- KM3NeT will soon take over as the biggest detector in the Northern Hemisphere (KM3NeT phase-1 will be ≈ 0.1 km³)
- Next phase (KM3NeT 2.0) to follow
 - ARCA ($\approx 1 \text{ km}^3$) to be installed at the Italian node of the KM3NeT distributed infrastructure
 - ORCA (\approx 7 Mt) to be installed at the French node
- Exciting physics prospects
 - Investigate the neutrino sky with unprecedented resolution and sky coverage with ARCA
 - Determine Neutrino Mass Hierarchy with ORCA

BACK UP

DEPTH DEPENDENCE PRELIMINARY

Capo Passero site 3500 m depth

NMH experiments

Widths indicate main uncertainty LBNE/NOVA: δ cp JUNO: σ E (3.0-3.5%) ORCA/PINGU/INO: θ_{23}

Other projections assume worst case parameters (1st oct)

ORCA timeline, assumes start construction 2017 for 3 years

LBNE from LBNE-doc-8087-V10 PINGU from MANTS 2015 Others Blennow

3 sigma determination of neutrino mass hierarchy in 3/4 years

ORCA SENSITIVITY

- 1. Random set of oscillation parameter values generated (uncorrelated)
- 2. 2 (tracks, cascades) x 2D (E_{rec} , θ_{rec}) histograms = 1 PE
- 3. Compute Likelihood given both hypotheses
- 4. Fit mixing parameters assuming both NH and IH (max likelihood)
- 5. Compute $\Delta \log L = \log(L(NH)/L(IH))$

ORCA INPUT

parameter	true value distr.	initial value distr.	treatment	prior
θ ₂₃ [°]	{40, 42, , 50}	uniform over [35, 55] †	fitted	no
θ ₁₃ [°]	8.42	$\mu = 8.42$, $\sigma = 0.26$	fitted	yes
θ ₁₂ [°]	34	$\mu=$ 34, $\sigma=1$	nuisance	N/A
$\Delta M^2 [10^{-3} \text{ eV}^2]$	$\mu = 2.4$, $\sigma = 0.05$	$\mu = 2.4, \ \sigma = 0.05$	fitted	no
$\Delta m^2 [10^{-5} \text{ eV}^2]$	7.6	$\mu = 7.6, \ \sigma = 0.2$	nuisance	N/A
δ _{CP} [°]	0	uniform over [0, 360]	fitted	no
overall flux factor	1	$\mu=$ 1, $\sigma=$ 0.1	fitted	yes
NC scaling	1	$\mu=$ 1, $\sigma=$ 0.05	fitted	yes
$\nu/\bar{\nu}$ skew	0	$\mu=$ 0, $\sigma=$ 0.03	fitted	yes
μ/e skew	0	$\mu=$ 0, $\sigma=$ 0.05	fitted	yes
energy slope	0	$\mu=$ 0, $\sigma=$ 0.05	fitted	yes

Table 7: Default parameter settings used for the LLR analysis. Where μ and σ are given, they refer to a Gaussian distribution. The \dagger indicates that the initial values for θ_{23} are generated in a special way: a total of seven initial values is tried. They are $x + i \times 5^{\circ}$, where x is the randomly drawn value and $i \in [-3, -2, ..., 3]$.

KM3NET COST BREAK DOWN

- Shore station (incl. computing)
- Deep-sea cable network
- Deployments
- Strings (without PMTs)
- PMTs (incl. base and reflector)