Listening to the gravitational wave universe with Advanced LIGO

Ik Siong Heng, University of Glasgow, on behalf of the LIGO Scientific Collaboration and Virgo

LIGO Hanford Observatory

Hanford, WA

LIGO Livingston Observatory

12.00

Advanced LIGO

 Advanced LIGO aims to improve sensitivity by a factor of 10 with respect to LIGO, leading to a factor of 1000 increase in search volume and, thus, expected event rate

image credit: Matt Evans (MIT)

Upgrading to Advanced LIGO

- Lasers become more powerful: use 200 W lasers
- Improvements to suspensions
 - test masses (previously 10 kg simple pendulums) become 40 kg monolithic suspensions in quadruple pendulums
 - improved optical systems
- Seismic isolation goes from passive to active

Advanced LIGO design sensitivity

Fundamental Noises:

I. Displacement noise

 $\rightarrow \Delta L(f)$

- Seismic noise
- Radiation Pressure
- •Thermal noise
 - Suspensions

Strain [1/vHz]

- Optics
- Sensing Noise

 $\rightarrow \Delta t_{photon}(f)$

- Shot Noise
- Residual Gas

Technical Noises:

• Loads of them!

Quantum noise Seismic noise Gravity Gradients Suspension thermal noise Coating Brownian noise Coating Thermo-optic noise 10⁻²² Substrate Brownian noise Excess Gas Total noise 10 10⁻²⁴ 10^{3} 10^{1} 10^{2} Frequency [Hz]

Advanced LIGO Design Noise Budget

Towards design sensitivity

			01	02	O3		
Epoch		2015 - 2016	2016 - 2017	2017 - 2018	2019 +	2022+ (India)	
Estimated run duration		ion	4 months	6 months	9 months	(per year)	(per year)
Burst range	e/Mpc	LIGO Virgo	40-60	$60 - 75 \\ 20 - 40$	$75 - 90 \\ 40 - 50$	$105 \\ 40\!-\!80$	$\begin{array}{c} 105 \\ 80 \end{array}$
BNS range	$e/{ m Mpc}$	LIGO Virgo	40-80	$80 - 120 \\ 20 - 60$	$\frac{120-170}{60-85}$	$200 \\ 65 - 115$	200 130
Estimated BNS detections		0.0005 - 4	0.006 - 20	0.04 - 100	0.2 - 200	$0.4\!-\!400$	
90% CR	% within median	$\frac{5 \text{ deg}^2}{20 \text{ deg}^2}$ n/deg ²	< 1 < 1 < 1 480	$\begin{array}{c}2\\14\\230\end{array}$	> 1-2 > 10	> 3-8 > 8-30	> 20 > 50

arXiv:1304.0670

Towards design sensitivity

Observing run 1 (01)

Abbott, et al. ,LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116, 131103 (2016).

Observing run 1 (01)

- Observing run 1 is the first science data taking run of Advanced LIGO
 - Sept 12, 2015 to Jan 19, 2016
 - Coincident observing time of ~51 days
- Sensitivity improvement of ~5 over initial LIGO
- Detected 2 gravitational wave signals from binary black hole coalescence and merger
 - plus one candidate event
- Detection papers:
 - > GW150914: *PRL* **116**, 061102 (2016)
 - > GW151226: PRL **116**, 241103 (2016)
- Also performed searches for gravitational waves from unmodelled transients, rapidly rotating neutron stars, a stochastic gravitational wave background and more

Science summaries

http://www.ligo.org/science/outreach.php

arXiv:1606.04856

((O))VIRG

		· · · · · · · · · · · · · · · · · · ·
GW150914	GW151226	LVT151012
$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
$29.1_{-4.4}^{+3.7}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}
$28.1^{+1.8}_{-1.5}$	$8.9\substack{+0.3 \\ -0.3}$	$15.1^{+1.4}_{-1.1}$
$65.3_{-3.4}^{+4.1}$	$21.8^{+5.9}_{-1.7}$	37^{+13}_{-4}
$-0.06\substack{+0.14\\-0.14}$	$0.21\substack{+0.20 \\ -0.10}$	$0.0\substack{+0.3 \\ -0.2}$
420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}
$0.09\substack{+0.03 \\ -0.04}$	$0.09\substack{+0.03 \\ -0.04}$	$0.20\substack{+0.09 \\ -0.09}$
230	850	1600
	$\frac{\text{GW150914}}{36.2_{-3.8}^{+5.2}}$ $29.1_{-4.4}^{+3.7}$ $28.1_{-1.5}^{+1.8}$ $65.3_{-3.4}^{+4.1}$ $-0.06_{-0.14}^{+0.14}$ 420_{-180}^{+150} $0.09_{-0.04}^{+0.03}$ 230	GW150914GW151226 $36.2^{+5.2}_{-3.8}$ $14.2^{+8.3}_{-3.7}$ $29.1^{+3.7}_{-4.4}$ $7.5^{+2.3}_{-2.3}$ $28.1^{+1.8}_{-1.5}$ $8.9^{+0.3}_{-0.3}$ $65.3^{+4.1}_{-3.4}$ $21.8^{+5.9}_{-1.7}$ $-0.06^{+0.14}_{-0.14}$ $0.21^{+0.20}_{-0.10}$ 420^{+150}_{-180} 440^{+180}_{-190} $0.09^{+0.03}_{-0.04}$ $0.09^{+0.03}_{-0.04}$ 230 850

modified version of table in arXiv:1606.04856

Larson,

GW150914: sky location estimate

GW150914: Rapid source sky localisation

- •cWB, LIB, BW: burst analyses
- LALInf: sky location estimate assuming full waveform model

GW150914: search for counterparts

Sky location estimates

Cosmic Ray International Seminar 2016, Ischia, Italy

Credit: LIGO/Leo Singer (Milky Way image: Axel Mellinger) LIGO-G1601316

Prospects for next runs

- The next Observing Runs target improved sensitivities and longer runs
- It is extremely likely that there will be many more binary black hole detections
- Also be searching for signals from binary neutron stars, unmodelled transients, stochastic background, rotating neutron stars, cosmic strings.... arx

LIGO India

- LIGO-India is an Advanced LIGO detector in India
- It has been approved by the Indian government

 Undergoing site selection process

Off-site facility to enable training prior to LIGO-India construction

Improved sky localisation

GW150914: LIGO only

GW150914: LIGO \rightarrow LV \rightarrow LVI (Preliminary)

$375^\circ \rightarrow 9.3^\circ \rightarrow 7.8^\circ$ (99% confidence level)

LIGO-G1601271-v1

S. Fairhurst, "Improved source localization with LIGO India", arXiv:1205.6611v1

S. Fairhurst, "Improved source localization with LIGO India", arXiv:1205.6611v1

Beyond Advanced LIGO

Instrument Science white paper: https://dcc.ligo.org/LIGO-T1500290

A+, Voyager and Cosmic Explorer

https://dcc.ligo.org/LIGO-T1500290

Science questions to be answered

Fundamental Physics

- Is the nature of gravitational radiation as predicted by Einstein?
- >Are nature's black holes the black holes of general relativity?
- What is the equation of state of ultra dense matter in neutron stars?

Astrophysics

- > What is the central engine behind gamma-ray bursts?
- > What happens when a massive star collapses?
- How abundant are stellar mass black holes?
- How massive can neutron stars be?

Cosmology

> What is the history of the accelerating expansion of the Universe?

Extra slides

EM partners

