Testing hadronic interactions with the Pierre Auger Observatory

F. Diogo on behalf of the Pierre Auger Collaboration CRIS 2016

 8^{th} July 2016

Pierre Auger Observatory

Shower observables

Outline

FD images electromagnetic shower development

- $\blacktriangleright X_{max}$
 - primary composition trends
 - interaction cross-section
- shower development

SD is also sensitive to muons

 X_{max}^{μ}

Number of muons

Use consistency of SD and FD observables to check hadronic models

X_{max} distributions - composition fit

Mass composition from X_{max}

Proton-air cross section

Distribution of first interaction depths dominate the tail of the X_{max} distribution

$$\frac{dp}{dX_1} = \frac{1}{\lambda_{p-Air}} e^{-X_1/\lambda_{p-Air}}$$

Proton-Proton cross section

Average electromagnetic profile shape

Profile shape is described by 2 parameters

- L (width) and R (asymmetry)
- Indication of Δ : $X_{max} = X_1 + \Delta$

Average electromagnetic profile shape

Profile shape is described by 2 parameters

- ► L (width) and R (asymmetry)
- Indication of Δ : $X_{max} = X_1 + \Delta$

New independent test on models

- good agreement, compatible with X_{max}
- h.e. models can consistently explain electromagnetic profile variables

Outline

FD images electromagnetic shower development X_{max} primary composition trends interaction cross-section shower development

SD is also sensitive to muons

- $\blacktriangleright X^{\mu}_{max}$
- Number of muons

Use consistency of SD and FD observables to check hadronic models

Imaging the muon production profile

Imaging the muon production profile

Muons interact scarcely with the atmosphere

 preserve information from their production point

Imaging the muon production profile

Muons interact scarcely with the atmosphere

 preserve information from their production point

Muon Production Depth

- ▶ large θ (55°-65°), r (>1.7 km)
 - dominated by muons
- \blacktriangleright time \rightarrow production point
- fit profile $\rightarrow X^{\mu}_{max}$

Muon Production Depth maximum

Data bracketed only by QGSJetII04

Muon Production Depth maximum

Data bracketed only by QGSJetII04

 X_{max}^{μ} (and X_{max}) can be translated into $\ln(A)$

- same X₁ as X_{max}, showing differences in development length
- QGSJETII04 compatible
- EPOS-LHC incompatible at $> 6\sigma$

Measuring muon number - inclined events

Testing hadronic interactions with the Pierre Auger Observatory

Numbers of muons: energy evolution

Numbers of muons: energy evolution parameters

Top-down: Matching hybrid events with simulation

- Match simulation with measured FD profiles
- compare SD S(1000) parameter
 clear excess in data

Top-down: Matching hybrid events with simulation

 shift the energy scale and hadronic component in simulation until we get a match in S(1000) vs sec(θ)

Model	R_E	R_{μ}
QII-04 Mixed	$1.00{\scriptstyle\pm0.08{\scriptstyle\pm0.11}}$	$1.59{\scriptstyle\pm0.18{\scriptstyle\pm0.11}}$
EPOS Mixed	$1.01{\pm}0.07{\pm}0.08$	$1.30{\pm}0.13{\pm}0.09$

1.3

What determines shower behaviour?

- Hadronic parameters modified in high energy models
 - cross-section (measured at $\sim 10\%$)
 - inelasticity
 - multiplicity
 - π^0 production ratio (changed with ρ^0 prod. for ex.)

X_{max} vs N_{mu} - Particle Physics

Observables have different sensitivity to parameters:

- N^{μ} : π^{0} energy fraction, primary mass, multiplicity
- ► X_{max}: primary mass, multiplicity, inelasticity

Conclusion

Electromagnetic profile variables ($\langle X_{max} \rangle$, $\sigma(X_{max})$, shape) and spectrum

- composition mixed around and above the ankle
- consistent picture within each hadronic model

In the hadronic sector there are some puzzling results

- muon number
 - at odds with predictions for mixed composition
- muon production depth vs. X_{max}
 - QGSjetII-04: marginally compatible, EPOS-LHC: incompatible
- beginning to probe which parameters control each variable
 - particle physics