Development of a SiPM based camera for the Cherenkov Telescope Array

G.Ambrosi⁽¹⁾, M.Ambrosio⁽²⁾, C.Aramo⁽²⁾, E.Bissaldi^(3,4), A.Boiano⁽²⁾, C.Bonavolontà^(2,5), C.de Lisio^(2,5), L. Di Venere^(3,4), E.Fiandrini^(1,6), N.Giglietto^(3,4), F.Giordano^(3,4), M.Ionica⁽¹⁾, V.Masone⁽²⁾, R.Paoletti^(7,8), V.Postolache⁽¹⁾, **D.Simone**^{*(3)}, V.Vagelli^(1,6), M.Valentino⁽⁹⁾ for the CTA Consortium¹⁰

(1) INFN Perugia, Italy, (2) INFN Napoli, Italy, (3) INFN Bari, Italy, (4) Università e Politecnico di Bari, Italy, (5) Università di Napoli, Italy, (6) Università di Perugia, Italy, (7) INFN Pisa, Italy, (8) Università di Siena, Italy, (9) CNR-Spin Napoli, Italy, (10) See www.cta-observatory.org for full author & affiliation list *daniela.simone@ba.infn.it

ABSTRACT The Italian Institute of Nuclear Physics (INFN) is involved in the development of a prototype for a camera based on Silicon Photomultipliers (SiPMs) for the Cherenkov Telescope Array (CTA), a new generation of telescopes for ground-based gamma-ray astronomy. In this framework, an R&D program within the 'Progetto Premiale TElescopi CHErenkov made in Italy (TECHE.it)' for the development of SiPMs suitable for Cherenkov light detection in the Near-Ultraviolet (NUV SiPMs) has been carried out. The developed device is a High-Density (HD) NUV-SiPM based on a micro cell of 30x30 µm² and 6x6 mm² area produced by Fondazione Bruno Kessler (FBK [1]). A characterization of the single SiPM will be presented. The NUV-HD SiPM arranged in a matrix of 8x8 single units will be part of the focal plane of the Schwarzschild-Couder Telescope prototype (pSCT) for CTA. An update on recent tests of the detectors arranged in this matrix configuration and on the front-end electronics will be given.

Supported by:

1. 6mm x 6mm Area SiPM

A first extensive test campaign was devoted to the study of NUV-HD SiPMs (with cell area of 30x30 μ m² and 6x6 mm² pixel size) in single configuration [2]. The current signal is converted to a voltage signal by an Op-Amp based transimpedance amplifier (Advansid [3]). All the tests are performed in a dark box at room temperature (25°C). In order to characterize the SiPM, we illuminated it with LEDs at 300, 345, 380 and 460 nm. The interval between 4 and 10 V of OverVoltage (OV) is considered. The SiPM signal is analyzed both in terms of amplitude and charge. Two example distributions are shown in Fig.1.

2. Preliminary study towards an extensive test campaign for pSCT

NUV-HD SiPM with 30x30 μ m² and 6x6 mm² pixel size will equip part of the focal plane of pSCT (see Fiandrini's poster). 1600 NUV-HD SiPMs, grouped in units of 64 detectors, will be tested before the installation on the camera in order to verify the uniformity of crucial parameters such as gain and SNR. A preliminary study on a NUV-HD SiPM with 1x1 mm² pixel size has been performed to test the reliability of the DAQ system based on a QDC module V792 that will be employed for the test campaign. First, amplitude, charge distribution and charge as a function of time have been evaluated from waveforms detected using and oscilloscope as shown in Fig.4 and Fig.5.

A systematic study of the opposite trending curves of the SiPM gains and the 1st peak Signal-to-Noise Ratios (SNRs) allows us to choose the best integration time for future analysis (~75 ns, see Fig.2). Moreover, our tests reveal a uniformity in the behavior of the device in terms of gain. Fig.3 shows gains vs. OV, calculated considering different integration times for our 4 LEDs. Values are compatible except for high biases and long integration times due to the fluctuations in the waveform tail.

Then, under the same conditions of V_{bias} and light intensity, analysis of data acquired by the QDC at several gates reveal a structure of charge histogram very similar to the one obtained from the waveform analysis and an agreement between gain and SNR calculated using the two methods.

REFERENCES

[1] http://www.fbk.eu [2] F. Acerbi et al., IEEE Trans Nucl Sci., Vol:62, NO:3 (2015) [3] http://advansid.com/home [4] G. Ambrosi et al., ICRC 2015 Proceeding

ACKNOWLEDGEMENTS We gratefully acknowledge support from agencies and organizations under Funding Agencies at www.cta-observatory.org.

www.cta-observatory.org