

Status of the Medium Size Telescope for the Cherenkov Telescope Array

MARKUS GARCZARCZYK

on behalf of the CTA consortium

Cosmic Ray International Seminar 2016 - Ischia - 4.07.2016

MST Status | 4 July 2016 | Page 2

MST sub-system

- Core energy range: 100 GeV 10 TeV
- Baseline: 25/15 MSTs in South/North Initial stage: 15/5 MSTs in South/North
- Three sub-projects

Telescope assemblies

Drive assemblies

0 1°

7"

tracking precision

pointing precision

SingleCCD camera

- Monitoring of the focal plane and star FoV:
 - Design by ECAP based on H.E.S.S.
 - Apogee CG 8300
 - Electronic shutter
 - 3298×2472 pixels with 5.4 μm
 - Nikon Nikkor 50mm f/1.8 lens (20°×15° FoV)
 - Design proven with simulations
 - Tests on prototype ongoing

MST prototype built in Berlin

pSCT positioner deployed in Arizona

MST Status | 4 July 2016 | Page 8

Relative star movement in SkyCCD with simple bending model

- Validation drive/structure monitoring

Validation of monitoring CCD camera

- Software development / debugging
- Generation of failures Analysis of telescope bending
- Continuous remote operation of the telescope - Tracking of celestial coordinates

Performance of the drive system

Mirrors

- Hexagonal shape: 1.2 m width (side/side), r = 32.14 m, R_{300-550 nm} > 85%
- Three providers:
 - Higher production rate
 - Open / closed structure
- Unified mirror-AMC interface

Mirror technology	Description	Coating (PVD)	Width / Weight	Responsible institution
Glass replica mirrors (sandwich structure design)	Two glass sheets, cold slumped, with Al honeycomb in between. Plastic profile to protect the edges and seal the honeycomb structure.	Al+SiO ₂	25mm / 16kg	INAF, Italy
	Two glass sheets, cold slumped. Glass side walls.	Al+SiO ₂ +HfO ₂ +SiO ₂	40mm / 19kg	CEA, France
	Core made of two glass sheets separated by Al tube spacers, open structure (not sealed). Reflective surface made of an pre-coated glass sheet, glued using the cold slumping technique to the core substrate. Glass epoxy layer between the glued surfaces.	Al+SiO ₂ +HfO ₂ +SiO ₂	60mm / 33kg	IFJ-PAN, Poland

Active mirror control

- Used during initial alignment and after mirror recoating
- Advantages: safety, f_(ele), defocus
- Revised H.E.S.S-II concept
 - Commercial servo motor
 - Embedded PC as interface to ACTL (OPC-UA)
- Ongoing actuator consolidation
 within CTA

Mirror alignment

- Pre-alignment using Bokeh-Method
- Fine alignment with stars

Mirror tests in climate room

Mirror characterisation

12 KPS1 10 IFJ-PAN 2 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 d80 at nominal distance (16.07 m) [mm] 16 KPS1 14 IFJ-PAN CEA 1 month 12 CEA 5 months IFJ-PAN 5 months 10 2 74 76 78 80 82 84 86 88 90 92 94 96 98 100 12 13

al distance (16.07 m) [mm] mirror focused reflectivity at 463 nm in a circle of 35 mm diameter [%]

- Initial characterisation (2f setup / PMD)
- Test on the prototype telescope
- Long term T cycle test in climate room
 - Problem detected & corrected

MST FlashCam & MST NectarCAM

- Two camera designs with different architecture and technology, both fulfilling CTA requirements
- Expertise and resources of both sub-projects combined in MST
- Unified interface to telescope structure, cameras exchangeable

FlashCam: Architecture & Specifications

3 m

Mechanical structure & thermal insulation

Photon detector plane ~

Window & shutter

• 1758 pixels (PMTs), 7.7° FoV

Flash

Can

- 0.2 ... 3000 p.e. dynamic range
- Continuous digitisation with 250 MHz
- Fully digital trigger formation & readout
- >20 kHz dead-time free Ethernet-based DAQ
- <4.5 kW power consumption

FlashCam prototype

Two types of PMTs installed in PDP: 358 Hamamatsu R11920-100 (8 dynodes) 359 Hamamatsu R12992-100 (7 dynodes) Remaining slots with dummy heater modules

– 1G fibre (safety /slow)

 4x10G fibre bundle, 1km long (data) to camera server

Readout, safety & power system, PDP

Dead-time free DAQ at >20 kHz event rate verified Readout system complete:

- Readout electronics for up to 2304 channels installed
- Cabling nearly complete (optimising for mass prod.) Near final safety, power and mechanics:
- Power consumption of complete system as specified
- Closed-circuit cooling with ~20°C coolant works Software in good state:
- Remote control of all components works
- DAQ over 1 km 4×10G fibres works out of the box
- Analysis & calibration software evolving

Charge resolution at expected NSB rates

MST Status | 4 July 2016 | Page 19

Basics of NectarCAM

- 1855 pixels (PMTs), 265 modules, 8.0° FoV
- 0.5 ... 2000 p.e. dynamic range
- Nectar chip based (2 gains/channel)
- Digitalization: 0.5 2 GHz (1 GHz nominal)
- Dead time <3%
- 2 trigger solutions (digital/analogue)
- Power consumption 7.7 kW
- Design similar to LST camera

Digital trigger test-setup

19-module prototype built to validate the digital/analogue trigger performance

MST Status | 4 July 2016 | Page 21

NectarCAM prototyping

- Focal plane instrumentation available
- Front-end electronics fully characterized on single modules
- DAQ successfully tested with burst of simulated data
- Slow control hardware/software tested
- Cooling system qualified with demonstrator
- Extensive testing of 19 module mini-camera
- 500 m² integration facility with dark room

• Structure:

- Testing of new mirror and AMC prototypes
- Assembly and test of new dish structure
- Requirements validation
- FlashCam:
 - Test and characterisation of prototype
 - Production of 2 pre-series cameras in 2017
- NectarCAM:
 - Trigger selection with 19 module camera
 - Start production qualification camera
- 2-3 pre-production MSTs ready in 2017/2018

Next steps

