# CRIS2016 -10th Cosmic Ray International Seminar Ischia, july 4-8 2016



# LHCf Highlights

Alessia Tricomi University and INFN Catania, Italy

#### Outline

- Physics Motivations
  - The Link between HECR Physics and LHC
- o The LHCf detectors
  - "Il vino buono sta nella botte piccola" or "good things comes in small packages"
- o Physics Results
  - o what we have done so far
- o Future Plans
  - o what's next...



- o Physics Motivations
  - The Link between
    HECR Physics and
    LHC
- o The LHCf detectors
  - "Il vino buono sta nella botte piccola" or "good things comes in small packages"
- o Physics Results
  - o what we have done so far
- o Future Plans
  - o what's next...



#### Ultra High Energy Cosmic Rays

Studying the properties of primary High Energy Cosmic Rays based on observation of EAS\_\_\_\_



MC Simulation to describe hadronic interaction with atmosphere







Surface detectors (charged+photon)

- Energy, mass composition, direction
- -> source of primary cosmic rays
- -> origin of the universe (final goal)

What are

Cosmic Rays?!

# Observation of UHECR

 $10^{4}$ 







LEAP - satellite

Energy (eV)

#### HECR Physics at LHC: LHCf Physics

Model-originated uncertainties or even discrepancies

- Energy
   ESD > EFD:
   discrepancy
   missing energy (μ,ν)
   in FD: uncertainty
- o Mass
  - Mass vs. Xmax in FD:
  - Mass vs. e/µ or µ excess in SD:

    discrepancy







#### LHCf ->use LHC

6.5 TeV+6.5 TeV⇒Elab=9\*10¹6 eV
3.5 TeV+3.5 TeV⇒Elab=2.6\*10¹6 eV
450 GeV+450 GeV⇒Elab=2\*10¹4 eV
to calibrate MCs
In addition: p-Pb collision at
5.02€8TeV to study nuclear
effect

### LHC Phase space coverage



We are profiting of the broad coverage but more than 50% of the shower from  $\eta>8$  Dedicated fwd experiments crucial!





- Physics Motivations
  - The link between HECR Physics and LHC
- o The LHCf detectors
  - "Il vino buono sta
    nella botte piccola"
    or "good things
    comes in small
    packages"
- o Physics Results
  - o what we have done so far
- o Future Plans
  - o what's next...





## The LHCf Delector





(W:  $X_0 = 3.5 mm, R_M = 9 mm)$ 

2 towers 24 cm long stacked vertically with 5 mm gap

16 scintillator layers (Plastic or GSO)

Trigger and energy profile measurements

Alessia Tricomi

directions

pairs of silicon micro-strip layers

for tracking purpose (X and Y

Zero degree neutral measurements with LHCf at LHC

# From our photo album...



# A brief LHCf photo-history

May 2004 LOI

■ Feb 2006 TDR

June 2006 LHCC approved

Jul 2006 construction

Jan 2008
Installation
Sept
1st LHC beam



Aug 2007 SPS beam test

Dec- Jul 2010 0.9TeV& 7TeV pp Detector removal





Dec 2012- Feb 2013 5TeV/n pPb, 2.76TeVpp (Arm2 only) Detector removal



May-June 2015 13 TeV dedicated pp Detector removal

- Physics Motivations
  - The link between HECR Physics and LHC
- o The LHCf detectors
  - "Il vino buono sta nella botte piccola" or "good things comes in small packages"
- o Physics Results
  - o what we have done so far
- o Future Plans
  - o what's next...





# LHCf Data Taking and Analysis matrix

|                     | Proton E | Photon<br>(EM shower)                                               | Neutron<br>(hadron                      | T<br>(EM shower)                                      |      |
|---------------------|----------|---------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|------|
| Test beam at<br>SPS |          | NIM. A 671,<br>129-136 (2012)                                       | JINST 9<br>(2014)P03016                 |                                                       |      |
| p-p at<br>900GeV    | 4.3x10   | Phys. Lett. B 715,<br>298-303 (2012)                                |                                         |                                                       |      |
| p-p at 7TeV         | 2.6x10   | Phys. Lett. B 703,<br>128-134 (2011)                                | Phys. Lett. B<br>750, 360-366<br>(2015) | Phys. Rev. D 86,<br>092001 (2012)+<br>Submit. Type II | Run1 |
| p-p at 2.76TeV      | 4.1x10   |                                                                     |                                         | Phys. Rev. C 89,<br>065209 (2014)+                    | Runz |
| p-Pb at 5.02TeV     | 1,3x10   |                                                                     |                                         | Submit. Type II                                       | Runk |
| p-p at 13TeV        | 9,0x10   | Data taken in June 2015 dedicated run!<br>Analysis activity ongoing |                                         |                                                       | Run3 |
| p-Pb at 8.1 TeV     | 3,6x10   | Letter of Intent submitted at the red!!!  March 2016 Approved!!!    |                                         |                                                       | Run4 |

Alessia Tricomi

Zero degree neutral measurements with LHCf at LHC

### LHCf@pp7TeV: Single photon spectra MC vs Data



### LHCf@pp7TeV: neutron analysis

#### Motivations:

- @ Inelasticity measurement k=1-pleading/pbeam
- o Muon excess at Pierre Auger Observatory
  - cosmic rays experiment measure PCR energy from muon number at ground and florescence light
  - 20-100% more muons than expected have been observed



- & Number of muons depends on the energy fraction of produced hadron
- o Muon excess in data even for Fe primary MC
- EPOS predicts more muon due to larger baryon production

importance of baryon measurement





by interaction models



Zero degree neutral measurements with LHCf at LHC

### LHCf@pp7TeV: neutron spectra



#### n/y ratio

| Data (       | 3.05±0.19 |
|--------------|-----------|
| DPMJET3.04   | 1.05      |
| EPOS 1.99    | 1.80      |
| PYTHIA 8.145 | 1.27      |
| QGSJET II-03 | 2.34      |
| SYBILL 2.1   | 0.88      |

| Data (8.99<  | 1.26±0.08 |
|--------------|-----------|
| DPMJET3.04   | 0.76      |
| EPOS 1.99    | 0.69      |
| PYTHIA 8.145 | 0.82      |
| QGSJET II-03 | 0.65      |
| SYBILL 2.1   | 0.57      |

| η > 10.76                                                | 8.99 < η < 9.22                                                          | 8.81 < η < 8.99                                                                 |
|----------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 0.6 ×10                                                  | EPOS 1.99 — PYTHIA 8.145 — QGSJET II-03 — SYBILL 2.1                     | 2.2 EPOS 1.99 — PYTHIA 8.145  U 1.8 — QGSJET II-03 — SYBILL 2.1                 |
| 0.3                                                      | 1.4                                                                      | 1.4                                                                             |
| 0.1<br>500 1000 1500 2000 2500 3000 3500<br>Energy [GeV] | 0.6<br>0.4<br>0.2<br>0 500 1000 1500 2000 2500 3000 3500<br>Energy [GeV] | 0.6<br>0.4<br>0.2<br>0.2<br>0.500 1000 1500 2000 2500 3000 3500<br>Energy [GeV] |

- 6 LHCf Arm1 and Arm2 agree with each other within systematic error, in which the energy scale uncertainty dominates.
- $\sigma$  In  $\eta > 10.76$  huge amount of neutron exists. Only QGSJET2 reproduces the LHCf result.
- In other rapidity regions, the LHCf results are enclosed by the variation of models.

### LHCf Type I and Type II manalysis









# LHCf@pp2.76 TeV: 10°pT spectra



## LHCf@pp7TeV: 10 pt spectra



### π° average pt for different cm energies

pt spectra vs best-fit function



pr> is inferred in 3 ways:

- 1. Thermodynamical approach
- 2. Gaussian distribution fit
- Numerical integration up to the histogram upper bound

Average pt vs year



From scaling considerations (projectile fragmentation region) we can expect that <pt> <pt> <pt> vs rapidity loss should be independent from the c.m. energy
Reasonable scaling can be inferred from the data

# Limiting fragmentation in forward $\pi^{\circ}$ production

Limiting fragmentation hypothesis:

rapidity distribution of the secondary particles in the forward rapidity region (target's fragment) should be independent of the center-of-mass energy.

This hypothesis for  $\pi^{\circ}$  is true at the level of  $\pm 15\%$ 



# Feynman scaling in forward $\pi^{\circ}$ production

Feynman scaling hypothesis:

cross sections of secondary particles as a function of  $x_F = 2p_z/\sqrt{s}$  are independent from the incident energy in the forward region  $(x_F > 0.2)$ .

This hypothesis for  $\pi^{\circ}$  is true at the level of  $\pm 20\%$ 



#### LHCf@pPb 5.02 TeV: Nuclear modification factor



$$R_{
m pPb}(p_{
m T})\equiv rac{d^2N_{\pi^0}^{
m pPb}/dydp_{
m T}}{\langle N_{
m coll}
angle d^2N_{\pi^0}^{
m pp}/dydp_{
m T}}$$
 < N<sub>coll</sub> > = 6.9

- LHCf show strong
   suppression in pPb wrt pp
   collisions
- Good agreement with the models



RHIC 200GeV d-Au, STAR Collaboration Adams et al., PRL 97 (2006) 152302.

### Common trigger with ATLAS







Classification of Events in the Combined ATLAS-LHCf Data Recorded During the  $p+{\rm Pb}$  Collisions at  $\sqrt{s_{_{\rm NN}}}=5.02\,{\rm TeV}$ 

The ATLAS and the LHCf Collaborations



# LHCf spectra in p-Pb collisions with Atlas tagging on tracks

#### Nsel:

number of good charged ATLAS tracks

- pt > 100 MeV
- vertex matching
- $|\eta| < 2.5.$

Significant UPC contribution in the very forward region with Nsel=0



#### Impact of common ATLAS-LHCf trigger





Physics discussed in detail for HERA (HI and ZEUS) measurements (see, for example, Khoze et al. Eur. Phys. J. C48 (2006), 797 and Refs. therein)

#### LHC 13 TeV CUM

- @ During Week 24, June 9-13, LHCf dedicated low-lumi run
- Total 26.6 hrs with L=0.5~1.6.10≥9 cm-25-1 (16 nb-1)
- $0^{\sim}39$  M showers, 0.5 M  $\pi^{\circ}$  obtained
- o Trigger exchange with ATLAS
- @ Detector removal on June 15th during TS1
- o Run was very successful!!!!





Significant improvement in phase-space acceptance

# An impressive high energy $\pi^{\circ}$



### First Look at 13 TeV data



Mandatory tool for energy scale calibration

#### Preliminary y energy spectra at 13 TeV



- Physics Motivations
  - The Link between HECR Physics and LHC
- o The LHCf detectors
  - "Il vino buono sta nella botte piccola" or "good things comes in small packages"
- o Physics Results
  - o what we have done so far
- o Future Plans
  o what's next...



Letter of intent; Precise measurements of very forward particle production at RHIC

Y.Itow, H.Menjo, G.Mitsuka, T.Sako

Solar-Terrestrial Environment Laboratoy / Kobayashi-Maskawa Institute for the Origin of Particles and the Universe / Graduate School of Science, Nagoya University, Japan

K.Kasahara, T.Suzuki, S.Torii Waseda University, Japan

> O.Adriani, A.Tricomi INFN, Italy

> > Y.Goto Riken BNL, Japan

K.Tanida Seoul National University

arXiv:1401.100

### at 8.1 Tev

Ony ARM2 Detector

Motivations:

#### \* Statistics:

- Measure 50 with increased statistics wrt 2013 run
- Possibility to detect the  $\eta$  meson
- Combined ATLAS-LHCf data take (very limited in 2013)

#### \* Phase space

- extend up to p\_>1 GeV/c
  - > deviations from models suggested from 2013 data at high pr
  - > investigate pQCD phase-space region

#### \* Scaling properties

- Extrapolation at extreme CR energies
- Feynman scaling: spectra in x<sub>F</sub>

#### LHCf

Letter of Intent for a p-Pb run in 2016

Submitted to LHCC in March was Institute for Unit

#### The LHCf collaboration

O. Adriani<sup>1,2</sup>, E. Berti<sup>1,2</sup>, L. Bonechi<sup>1</sup>, M. Bongi<sup>1,2</sup>, G. Castellini<sup>3</sup>, R. D'Alessandro<sup>1,2</sup>, M. Haguenauer<sup>4</sup>, Y. Itow<sup>5,6</sup>, T. Iwata<sup>7</sup> K. Kasahara<sup>7</sup>, Y. Makino<sup>5</sup>, K. Masuda<sup>5</sup>, E. Matsubayashi<sup>5</sup> Y. Matsubara<sup>5</sup>, H. Menio<sup>8</sup>, Y. Muraki<sup>5</sup>, Y. Okuno<sup>5</sup>, P. Papini<sup>1</sup>



### p-Pb at 8.1 TeV: Y & n spectra







(CRMC)\* framework has been used to simulate 107 collisions with 4 different hadronic interaction models:

- d9+p+ 3.0-6 p+Pb
- EPOSLHC p+Pl
- QGSJET II-04
  - HIJING 1.383

#### Expected neutron distribution (35% energy resolution





Small calorimeter
tower centered on
the beam spot
Only p-remnant side
considered

\* We acknowledge T. Pierog, C. Baus and R. Ulrich for support

# p-Pb at 8.1 TeV: perspective for ATLAS-LHCf combined analysis



Information from the ATLAS central region is essential to separate the contributions due to diffractive and non-diffractive collisions.

# From LHCf to RHICf

p-p at  $\sqrt{s}=510$  GeV with ARM1 in 2017 Extend  $\sqrt{s}$  coverage for the test of Feynman scaling

Letter of intent; Precise measurements of very forward particle production at RHIC

Y.Itow, H.Menjo, G.Mitsuka, T.Sako

Solar-Terrestrial Environment Laboratoy / Kobayashi-Maskawa Institute for the Origin of Particles and the Universe / Graduate School of Science, Nagoya University, Japan

K.Kasahara, T.Suzuki, S.Torii

Waseda University, Japan

O.Adriani, A.Tricomi

INFN, Italy

Y.Goto

Riken BNL, Japan

K.Tanida

Seoul National University

arXiv:1401.100





### The Far Fulure at LHC

- •The most promising future at LHC for LHCf involve the protonlight ion collisions
- To go from p-p to p-Air is not so simple....
  - Comparison of p-p, Pb-Pb and p-Pb is useful, but model dependent extrapolations are anyway necessary
- Direct measurements of p-0 or p-N could significantly reduce some systematic effects



# summary

- ⊗ Very forward γ, n and π0 production in p-p and p-Pb collision have been precisely measured by LHCf at E<sub>CM</sub> ≤ 7 TeV
  - LHCf zero degree results are significantly contributing to improve our knowledge of hadronic interaction model for HECR Physics
  - New results with hadrons are particularly interesting to understand the muon excess
  - o p-Pb results give important hints to understand nuclear medium effect
- o Very successful 13 TeV pp run has been done in June 2015
  - Analysis is on going
- An intensive 2016-2017 program is waiting for us

  - o 510 GeV p-p with polarized beam at RHIC in February 2017
- Still a lot of results will come in the next years... while waiting for p-Light Ion run at LHC
- So... stay tuned!