Studying hadronic interactions with inclusive atmospheric leptons

CRIS 2016 – Cosmic Ray International Seminar

Anatoli Fedynitch DESY Zeuthen

Inclusive atmospheric leptons

Atmospheric (cosmic) muon flux

New calculation methods

- > Accelerated solver of hadronic coupled cascade equations
- Solves simultaneously >6000 equations for individual particle species and energy bins
- Energy range 1 (50) GeV 10¹¹ GeV
- > Curved geometry, realistic atmosphere
- Contains tables for common interaction models
- > Works also on GPU and multi-core
- Public code MCEq: <u>https://github.com/afedynitch/MCEq</u>

CORSIKA: A. Fedynitch, J. Becker Tjus and P. Desiati, PRD 2012 MCEq: A. Fedynitch, R. Engel, T. K. Gaisser, F. Riehn and S. Todor. PoS ICRC 2015, 1129

Origin of atmospheric muons

 10^{3}

 10^{1}

 10^{0}

10

10

10

10

 10^{-5}

 10^{-6}

 Φ_{μ} (E/GeV)³ (cm² s sr GeV)⁻¹

total 10^{-2} 10² μ D^{\pm}, D^{0} total conv. D_s total prompt 10^{-} Λ_{c} other prompt other conv. unflavored 10^{-1} π 10^{10} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} E_{μ} [GeV] $\lambda_{ m dec,}\eta$ 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} $\Lambda_{ m dec,\pi^\pm}$ Interaction or decay length at h = 8 km $\lambda_{\text{int},N}$ 10^{8} E_{μ} (GeV) $\lambda_{\text{dec},K^{\pm}}$ unflavored $\lambda_{\rm dec,D^0}$ charm charm mostly **pion** decay 10^{6} decays decays interacts 10^{4} **Critical energy** 10^{2} 10^{0} 10^{-2} 10° 10^{2} 10^{8} 10^{10} 10^{4} 10^{6} Energy (GeV) Ischia, IT | 2016/07/08 | Page 4

Muons from unflavored hadrons

Hadron species taking part in atmospheric lepton production

Possible to distinguish mother hadrons

- Elongated profile of inclined showers reduces interactions
- Vertical leptons come more often from short lived particles
- > Horizontal from longer lived
- > Also atmospheric variations

1.0

Why don't accelerators solve all problems?

Scattering angle

$$p_z \sim \text{TeV} - \text{PeV}$$

 $p_T \sim \text{few GeV}$ $x_{\text{lab}} = \frac{E_{\text{secondary}}}{E_{\text{primary}}} \approx \frac{p_{z,\text{secondary}}}{E_{\text{primary}}}$
 $\theta = \arccos \frac{p_T}{p_Z}$

NA61/SHRINE

Phase-space: the leading particles are important

Phase-space regions contributing to inclusive muon neutrino flux

> Fedynitch (VLVNT) EPJ Web Conf. 116, 11010 (2016)

 10^{8}

 10^{9}

Looking on atmospheric leptons means looking into forward phase-space.

Fixed-target data as "anchor"

Energy extrapolation?

SIBYLL 2.1 (old) SIBYLL 2.3 (new) 10^{1} 10^{1} $\pi^+/\pi^ \pi^+/\pi^-$ 10 10 9 9 10^{0} 10 Ratio of secondary particle spectra $_{00}^{-10}$ $_{01}^{-10}$ Ratio of secondary particle spectra $_{001}^{101}$ $_{001}^{101}$ $_{101}^{101}$ Proton laboratory energy (GeV) GOZØProton laboratory energy (GeV) $K^+/K^ K^+/K^$ p/n p/n 1 4 10^{1} 10^{1} 3 3 10^{0} 10^{0} 2 10^{-} 10^{-} No guidance from 0.2 0.4 0.6 0.8 0.2 0.0 1.0 0.0 0.4 0.6 0.8 1.0Fraction of laboratory energy x_{lab} Fraction of laboratory energy x_{lab} accelerators

Big differences among models

Muon yield in single air-shower 10^{4} 10 TeV per nucleon · $\frac{\mathrm{d}N_{\mu}}{\mathrm{d}E}$ (GeV⁻¹) 1 PeV per nucleon 10^{6} 1 EeV per nucleon 10^{-4} 10^{-8} 10^{-12} 10^{-16} $10^9 \ 10^{10} \ 10^{11}$ 108 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 3.0 $\frac{dN_{\mu}}{dE}$ relative to SIBYLL2.3 SIBYLL2.3 SIBYLL2.1 2.5 EPOS-LHC DPMJET-III 2.0 QGSJET-II-04 c.5 ' 0.5 $\cap f$ 10^{4} 10^{6} 10^{0} 10^{2} Muon energy (GeV) High uncertainty High uncertainty Scaling for inclusive fluxes for air-showers

Quantifying the effect

Larger effect in SIBYLL compared to other models

Modeling of leading particle effect contributes to large uncertainties

Interpretation of atmospheric muon data

- Flux at sub-TeV probes primary interactions < 10 TeV
- > Current models bracket the measurement
- The description of fixed-target data had straight impact on the muon flux prediction (from tuning of SIBYLL 2.3)
- > SIBYLL 2.3 achieves a good description
- SIBYLL 2.1 is upper and DPMJET-III lower "bound"

How to adjust kaons?

- Muon neutrino flux becomes dominated by kaon decays above 100's GeV - few TeV
- > Muon charge ratio sensitive to leading particle effect, observed in K⁺/K⁻ from associated production $p + N \rightarrow \Lambda + K^+$
- SIBYLL 2.3 is the only model, qualitatively reproducing charge ratio
 20______

Modeling of kaons in SIBYLL 2.3 likely needs more adjustment

Muon flux measurement in IceCube

- Muon energy is reconstructed via energy loss pattern
- Big stochastic losses are attributed to single high energy muons
- Small, continuous losses are a signature for muon bundles
- > Observable is

$$E_{
m mult} \sim \sum_{N_{\mu}} E_{\mu}$$

"Characterization of the Atmospheric Muon Flux in IceCube" M. G. Aartsen et al. [IceCube Collaboration], Astropart. Phys. 78, 1 (2016)

Implications for hadronic models

- Models bracket horizontal muons
- Shape in vertical muons only described by SIBYLL 2.3 (with prompt)
- Unflavored component not significant at this energy

Interpretation ambiguity from the primary flux

Interpretation ambiguity from secondary interactions

- > Effect is larger than expected (< 5%)
- Leading particles change depending on projectile
- Other, indirect, production channels
 become more important, such as
 vector mesons

Conclusion and outlook

- > Studying hadronic interactions using inclusive lepton measurements is possible
- > Unique source of constraints for the energy dependence of the leading particle effect
- > Studied particle production phase-space is very forward and inaccessible to colliders
- > Feedback into air-shower simulations through tuning of interaction models
- Neutrino detectors have already published some relevant measurements of atmospheric neutrinos and muons at very high energies
- > SIBYLL 2.3 is the only model which takes into account atmospheric lepton data
- > EPOS-LHC has good overall agreement, except for the muon charge ratio
- > DPMJET-III currently under test as a cosmic ray hadronic interaction model

Measurement of flavor ratio not reproduced without oscillations

Our current calculation does not include oscillations and energy loss, yet.

