A Search for Solar Axion Using the ¹⁶⁹Tm-containing Bolometers

Evgeniy Unzhakov

Petersburg Nuclear Physics Institute St. Petersburg, Russia

LNGS Seminar, 26 Nov, 2015

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Outline

1 Axion Search Motivation

- Theoretical Introduction
- Axion Interaction With Matter

2 Experimental Axion Searches

- Overwiew
- Axion Experiments
 - $g_{A\gamma}$ Detection
 - \blacksquare g_{Ae} Detection
 - g_{AN} Detection

Tm-containing Bolometer Project
 LNGS cryogenic setup

Outline

1 Axion Search Motivation

- Theoretical Introduction
- Axion Interaction With Matter

2 Experimental Axion Searches

- Overwiew
- Axion Experiments
 - $g_{A\gamma}$ Detection
 - g_{Ae} Detection
 - g_{AN} Detection
- Tm-containing Bolometer Project
 LNGS cryogenic setup

Outline

1 Axion Search Motivation

- Theoretical Introduction
- Axion Interaction With Matter

2 Experimental Axion Searches

- Overwiew
- Axion Experiments
 - $g_{A\gamma}$ Detection
 - g_{Ae} Detection
 - g_{AN} Detection

3 Tm-containing Bolometer Project LNGS cryogenic setup

Axion Search Motivation

Theoretical Introduction

Outline

1 Axion Search Motivation

- Theoretical Introduction
- Axion Interaction With Matter

2 Experimental Axion Searches

- Overwiew
- Axion Experiments
 - $g_{A\gamma}$ Detection
 - \blacksquare g_{Ae} Detection
 - g_{AN} Detection

3 Tm-containing Bolometer Project LNGS cryogenic setup

Axion Search Motivation

Theoretical Introduction

Strong CP-problem

- Originally, the axion hypothesis arise as a mean of solving the Strong CP-problem.
- QCD Lagrangian contains a term, describing the gluon field interaction.

θ -term of QCD Lagrangian

$$L_{\theta} = \theta \frac{g_s^2}{32\pi^2} G_a^{\mu\nu} \tilde{G}_{\mu\nu}^a$$

• This term is not invariant towards *P* and *T* transformations, therefore the CP-violation should be observed in strong interactions.

Axion Search Motivation

Theoretical Introduction

Strong CP-problem

• As a consequence of such violation a non-zero electric dipole moment (EDM) of neutron should exist.

Neutron EDM

$$d_n \sim \theta \times 10^{-16} e \cdot \mathrm{cm}$$

The experimental limit on *n* EDM

$$|d_n| < 2.9 \times 10^{-26} e \cdot \text{cm} (90\% \text{ c.l.}) \Rightarrow \theta < 10^{-10}$$

• The question why θ is so small is known as the strong CP-problem.

Axion Search Motivation

Theoretical Introduction

Peccei-Quinn Solution

- In 1979 R.D. Peccei and H. Quinn proposed a solution by introducing a new chiral symmetry U(1)_{PQ}.
- The spontaneous breaking of this new symmetry at some energy f_A completely compensates the CP-violating term in QCD Lagrangian.

 θ -term compensation

$$L_{ heta} = \left(heta - rac{A}{f_A}
ight) rac{g_s^2}{32\pi^2} G_a^{\mu
u} ilde G_{\mu
u}^a$$

 In 1978 S. Weinberg and F. Wilczek showed that as a result of U(1)_{PQ} breaking a new neutral pseudoscalar particle should be produced.

The Axion

Axion Search Motivation

Theoretical Introduction

Peccei-Quinn Solution

- In 1979 R.D. Peccei and H. Quinn proposed a solution by introducing a new chiral symmetry U(1)_{PQ}.
- The spontaneous breaking of this new symmetry at some energy f_A completely compensates the CP-violating term in QCD Lagrangian.

 θ -term compensation

$$L_{ heta} = \left(heta - rac{A}{f_A}
ight) rac{g_s^2}{32\pi^2} G_a^{\mu
u} ilde G_{\mu
u}^a$$

 In 1978 S. Weinberg and F. Wilczek showed that as a result of U(1)_{PQ} breaking a new neutral pseudoscalar particle should be produced.

The Axion

Axion Search Motivation

Theoretical Introduction

Axion Properties

The value of the axion *mass* (m_A) and the strength of an effective axion coupling with *nucleons* $(g_{AN} = g_{AN}^0 + g_{AN}^3)$, *electrons* (g_{Ae}) , and *photons* $(g_A\gamma)$ appear to be inversely proportional to f_A .

Axion Mass

$$m_A \approx \left(\frac{f_\pi m_\pi}{f_A}\right) \left(\frac{\sqrt{z}}{(1+z)}\right)$$

Axion Coupling Constants

$$g_{AN}^{0} = -\frac{m_{N}}{6f_{A}} \left(2S_{fs} + (3F - D)\frac{1 + z - 2w}{1 + z + w} \right)$$
$$g_{AN}^{3} = -\frac{m_{N}}{2f_{A}} \left((D + F)\frac{1 - z}{1 + z + w} \right)$$

$$g_{A\gamma} = \frac{\alpha}{2\pi f_A} \left(\frac{E}{N} - \frac{2(4+z+w)}{3(1+z+w)} \right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ● ● ● ●

Axion Search Motivation

Axion Interaction With Matter

Outline

1 Axion Search Motivation

Theoretical Introduction

Axion Interaction With Matter

Experimental Axion Searches

- Overwiew
- Axion Experiments
 - $g_{A\gamma}$ Detection
 - \blacksquare g_{Ae} Detection
 - g_{AN} Detection

3 Tm-containing Bolometer Project LNGS cryogenic setup

Axion Search Motivation

Axion Interaction With Matter

Possible reactions

- **g**_{A γ}: $A \rightarrow 2\gamma$ decay (a) and inverse Primakoff effect (b) (axion conversion in the electromagnetic field).
- **2** \mathbf{g}_{Ae} : axio-electric (c) and compton-like (d) processes.
- **g**_{AN}: as a pseudoscalar particle axion can be absorbed and emitted in magnetic-type transitions.

Axion Search Motivation

Axion Interaction With Matter

Original Axion Model

- The original theoretical model (PQWW-axion) assumed f_A value to be of electroweak scale: $f_A = (\sqrt{2}G_F)^{-1/2} \approx 250 \text{ GeV}$
- Axion mass m_A and coupling constants in this model were precisely estimated

Expected Mass of PQWW-Axion

 $m_A \approx 25N(X+1/X) \ge 150 \text{ keV}$

• Existence of PQWW-axion has been disproved by experiments on reactors and accelerators and with artificial radioactive sources

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Axion Search Motivation

Axion Interaction With Matter

Invisible Axion Models

- Two classes of new theoretical models of an *invisible* axion were developed.
- Axion was retained in the form required for solving the CP-problem of strong interactions.
- Arbitrary f_A value which suppresses axion interaction with matter.

Invisible axion - a viable Dark Matter candidate.

Axion Search Motivation

Axion Interaction With Matter

The Sun as an Axion Source

- Thermonuclear reactions
- ho ~ keV-scale temperatures at the core
- Strong magnetic fields
- Well-established theoretical description (SSM)

▲□▶▲□▶▲□▶▲□▶ □ のQで

• The nearest star relative to Earth

Axion Search Motivation

Axion Interaction With Matter

Solar Axion Energy Spectrum

1 Reactions of the main solar chain (*g*_{AN})

- $p + d \rightarrow {}^{3}\text{He} + A$ 5.5 MeV (*pp*-neutrino flux)
- ⁷Be + e^{-} → ⁷Li^{*} + ν ; ⁷Li^{*} → ⁷Li + A 478 keV (⁷Be-neutrino flux)
- Thermal excitation of low-energy nuclear levels (g_{AN})

Nuclei with keV-scale excited states (Fe, Kr) can emit axions (has to be magnetic type)

- Primakoff effect (g_{Aγ})
 Photon-axion conversion inside the electromagnetic field.
- **4** Axion bremmstrahlung (g_{Ae})
- **5** Compton process (*g*_{A3})

Experimental Axion Searches

Outline

1 Axion Search Motivation

- Theoretical Introduction
- Axion Interaction With Matter

2 Experimental Axion SearchesOverwiew

- Axion Experiments
 - $g_{A\gamma}$ Detection
 - \blacksquare g_{Ae} Detection
 - g_{AN} Detection

3 Tm-containing Bolometer Project LNGS cryogenic setup

Experimental Axion Searches

Axion Detection

- In order to detect axions we have to rely on the same possible axion interactions:
 - \blacksquare $g_{A\gamma}$ Reverse axion-photon conversion in magnetic field
 - 2 g_{Ae} Axioelectric effect
 - **3** g_{AN} Resonant absorption by atomic nuclei with subsequent γ -quantum emission.

Experimental limit: $g_{A \text{ production}} \times g_{A \text{ detection}}$

Experimental Axion Searches

Classification

Experimental Axion Searches

Axion Experiments

Outline

1 Axion Search Motivation

- Theoretical Introduction
- Axion Interaction With Matter

2 Experimental Axion Searches

Overwiew

Axion Experiments

- $g_{A\gamma}$ Detection
- \blacksquare g_{Ae} Detection
- g_{AN} Detection

3 Tm-containing Bolometer Project LNGS cryogenic setup

Experimental Axion Searches

Axion Experiments

RF-Resonator (ADMX)

- Microwave resonator chamber (d = 1 m, l = 0.5 m)
- Artificial magnetic field
- Signal occurs when resonant frequency coincides with m_A

Experimental Axion Searches

Axion Experiments

Helioscopes (CAST)

- LHC prototype magnet (~ 9 Tesla, 10 m.)
- Solar axions
 (10⁻³ eV 1 eV mass range.)

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Experimental Axion Searches

Axion Experiments

Axion Detection by Axioelectric Effect (g_{Ae})

High energy axions

- A.-E. cross-section for *K*-shell electrons was calculated (on the assumption that $Z \ll 137$ and $E_A \gg E_b$
- Complex form: $\sim Z^5$
- 2 Low energy axions
 - $E_A, m_A < 511$ keV cross-section for the axio-electric effect for nonrelativistic axions is proportional to the cross section for the photoelectric effect for photons with the energy equal to the mass of the axion.
 - Relativistic axions in the case E_A < m_e and m_A → 0, the cross section differs by a factor of about 2/3 and by a change of mA to EA.

Cross-section Approximation

$$\sigma_{abs}(E_A) = \sigma p.e.(E-A) \frac{g_{Ae}^2}{\beta} \frac{3E_A^2}{16\pi\alpha m_2^2} \left(1 - \frac{\beta}{3}\right)$$

Experimental Axion Searches

Axion Experiments

Axioelectric Effect for Si Target

Axioelectric effect is similar to photoeffect:

$$\sigma_{Ae}|_{\beta \to 0} \simeq \sigma_{p.e.}(m_a) \frac{3m_A^2}{4\pi \alpha f_A^2 \beta}$$
$$\sigma_{Ae}|_{\beta \to 1} \simeq \sigma_{p.e.}(m_a) \frac{3m_A^2}{4\pi \alpha f_A^2 \beta}$$

• our approximation for all β values and $g_{Ae} = 2m_e/f_A$:

A.-E. Effect Cross-section

$$\sigma_{abs} = \frac{g_{Ae}^2}{\beta} \frac{3}{16} \frac{E_A^2}{\pi \alpha m_e^2} \sigma_{p.e.}(E_A) (1 - \frac{\beta}{3})$$

<□> <四> <四> <回> <回> <回> <回> <回> <回> <回> <000

Experimental Axion Searches

PNPI Si(Li) Detector Setup

- Si(Li) detector with a sensitive region diameter of 17 mm and a thickness of 2.5 mm (1.4 g).
- Placed in a vacuum cryostat was surrounded by 12.5 cm of copper and 2.5 cm of lead (@14 keV BG reduction ×110).
- Active shielding against cosmic rays and fast neutrons (5 canisters with scintillator).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Measurement live time: 76.5 days.

Experimental Axion Searches

Axion Experiments

Obtained Limit (Si)

- 1 Axioelectric effect (Si)
- 2 reactor experiments and 478 keV solar axions
- 3 beam dump experiments
- 4 decay of orthopositronium
- 5 CoGeNT
- 6 CDMS
- 7 Solar luminosity
- 8 red giants He ignition
- 9 ¹⁶⁹Tm resonant absorption
- 10 Borexino 5.5 MeV axions

g_{Ae} Limit

 $g_{Ae} < 2.2 \times 10^{-10} (90\% \text{ c.l.})$

Experimental Axion Searches

Axion Experiments

PNPI BGO Scintillator Setup

- Serach for monochromatic solar axions: 5.5 MeV
- 2.46 kg BGO crystal as scintillator.
- Located on Earth surface: active shielding against cosmic rays and fast neutrons.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Experimental Axion Searches

Axion Experiments

Results (BGO Scintillator)

• Measurement live time: 29.8 days.

Sensitivity

$$S_{\text{A peak}} = \epsilon_{\text{Reg.}} \cdot N_{\text{target nucl.}} \cdot (\Phi_{\text{B.s.}} + \Phi_{\text{Compt.}}) \cdot \sigma_{Ae}$$

g_{Ae} Limit

$$g_{Ae} \le 1.4 - 9.7 \times 10^{-7}$$

э

Experimental Axion Searches

Axion Experiments

BGO Crystal As A Bolometrer

 A suggestion came from LUCIFER collaboration to use the BGO crystal in *bolometric mode* inside the low-BG cryogenic setup. Eur. Phys. J. C (2014) 74:3035 DOI 10.1140/epic/s10052-014-3035-8 THE EUROPEAN PHYSICAL JOURNAL C

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Regular Article - Experimental Physics

Search for axioelectric effect of solar axions using BGO scintillating bolometer

A.V. Derbin^{1,2}, L. Gironi^{1,3}, S. Nagorny^{1,4}, L. Pattavina⁴, J. W. Berman⁶, F. Bellini^{1,3}, M. Biassoni^{1,3}, S. Capelli^{2,4}, M. Clemenza^{1,2}, L. S. Drachnev^{1,5}, E. Ferri^{1,3}, A. Giachero^{1,2}, C. Gotti^{2,3}, A.S. Kayunov¹, C. Maiano^{2,3}, M. Maino^{2,3}, V. N. Muratow¹, M. Pavan^{2,1}, S. Firro⁴, D. A. Semenov¹, M. Sisti^{1,2}, E. V. Unahakov¹

- St. Petersburg Nuclear Physics Institute, 188350 Gatchira, Russia
- ² INFN-Sezione di Milano Bicocca, 20126 Milano, Italy
 ³ Dirartimento di Finica, Università di Milano-Bicocca, 20126 Milano, Italy
- ³ Dipartimento di Finica, Università di Milano-Bicocca, 20126 Milano, Italy ⁴ INFN-Laboratori Nazionali del Gran Sasso, Assergi, 67100 L'Aquila, Italy
- ⁴ INFN-Laboratori Nazionali del Gran Sasso, Assergi, 67100 L'Aquila, li ⁵ Gran Sasso Science Institute, INFN, 67100 L'Aquila, AQ, Italy
- 4 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

8 Dipartimento di Fisica, Università di Roma La Sapienza, 00185 Rome, Italy

Detector	σ (keV) at 5.5 MeV	S _{lim} (counts/day)	mass (g)
Scintillator	93	85/30	2460
Bolometer	16	2.44/152	4×890

⁷ INFN-Sezione di Roma, 00185 Rome, Italy

Experimental Axion Searches

Axion Experiments

LNGS BGO Bolometer Setup

- Array of 4 BGO scinitillating bolometers, containing 1.65 kg of Bi.
- Four cubic (5 × 5 × 5 cm³) BGO crystals, with all optical faces were arranged in a four-plex module, one single plane set-up.
- The scintillation light produced by a particle interaction in the BGO absorbers was monitored with an auxiliary bolometer made of high-purity germanium, operated as a light detector (LD).
- The detector was operated for a total live time of 151.7 days.

Experimental Axion Searches

Axion Experiments

BGO Bolometer Energy Spectrum

Experimental Axion Searches

Axion Experiments

Obtained Limit (BGO Bolometer)

- 1,2 BGO bolometer limits $|g_{Ae} \times g_{AN}^3|$ and $|g_{Ae}|$, correspondingly;
- 3 solar and reactor experiments;
- 4 beam dump experiments;
- 5,6 BGO scintillator limits $|g_{Ae} \times g_{AN}^3|$ and $|g_{Ae}|$;
- 7,8 Borexino results

g_{Ae} Limit

$$|g_{Ae} imes g_{AN}^3| < 1.9 imes 10^{-10} \ 90\% \ {
m c.l.}$$

One order of magnitude improvement

Experimental Axion Searches

Axion Detection by Resonant Absorption g_{AN}

- Axions can be observed via the resonant absorption reaction by detecting γ-rays (or conversion e⁻'s) emitted in the process of the de-excitation of the excited nuclear level.
- Resonant absorption of axions is governed by the expression similar to that for γ -rays, corrected by the ratio ω_A/ω_γ .

Resonant Absorption Cross-section

$$\sigma(E_A) = 2\sqrt{\pi}\sigma_{0\gamma}\cdot e^{-rac{4(E_A-E_M)^2}{\Gamma^2}}\left(rac{\omega_A}{\omega_\gamma}
ight)$$

Emission Probability Ratio

$$\frac{\omega_A}{\omega_\gamma} = \frac{1}{2\pi\alpha} \frac{1}{1+\delta^2} \left[\frac{g_{AN}^0 \beta + g_{AN}^3}{(\mu_0 - 0, 5)(\beta + \mu_3 - \eta)} \right]^2 \left(\frac{p_A}{p_\gamma} \right)^3$$

Experimental Axion Searches

Axion Experiments

Resonant Absorption by ¹⁶⁹ Nucleus

- ¹⁶⁹Tm target (Stable isotope).
- $\blacksquare A + {}^{169} \mathrm{Tm} \rightarrow {}^{169} \mathrm{Tm}^* \rightarrow {}^{169} \mathrm{Tm} + \gamma.$
- M1-type transition with E2-transition admixture value of $\delta = 0.11\%$.
- 8.41 keV sensitive to axions produced by Bremmstrahlung/Compton(g_{Ae}) or Primakoff effect($g_{A\gamma}$).
- Electron conversion ratio $e/\gamma = 263$, maximum cross section of γ -ray absorption is 2.6×10^{-19} cm².

Experimental Axion Searches

Axion Experiments

Si(Li) Setup With ¹⁶⁹Tm

- Low-background setup + Si(Li) detector (d = 66 mm h = 5 mm).
- Tm₂ O₃ target 2 g.
- Setup limitations:
 - Low energy (8.4 keV)
 - \Rightarrow Thin layer of material
 - \Rightarrow Limit on the available mass of the target.
 - Increase of detector dimensions
 - \Rightarrow Increase of detector capacitance

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

 \Rightarrow Decrease of energy resolution.

Experimental Axion Searches

Axion Experiments

Obtained Limit (Tm)

• Measurement live time: 76.5 days.

$|g_{A\gamma} imes |(g_{AN})^0 + (g_{AN})^3| \le 9.2 imes 10^{-13}$

g_{Ae} Limit

 $g_{A\gamma}$ Limit

$$|g_{Ae} \times |(g_{AN})^0 + (g_{AN})^3| \le 1.36 \times 10^{-14}$$

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

- Tm-containing Bolometer Project

LNGS cryogenic setup

Outline

1 Axion Search Motivation

- Theoretical Introduction
- Axion Interaction With Matter

2 Experimental Axion Searches

- Overwiew
- Axion Experiments
 - $g_{A\gamma}$ Detection
 - \blacksquare g_{Ae} Detection
 - g_{AN} Detection

3 Tm-containing Bolometer Project LNGS cryogenic setup

Tm-containing Bolometer Project

LNGS cryogenic setup

Sensitivity Improvement

- Coefficient of electron conversion for 8.4 keV transition in the nucleus 169 Tm is $\epsilon = e/\gamma = 260)$
- Sensitivity of the experiment can be further increased in $260/\epsilon = 5 \times 10^3$ times ($\epsilon = 0.05$ detection efficiency of gamma rays emitted from the target by Si(Li) detector)
- Registration of all particles (conversion and Auger electrons and γ and X-rays) that accompany this transition.

This can be done in the implementation of thulium in the volume of the detector (scintillator or bolometer).

Enhancement factor (1 kg detector)

$$(e/\gamma = 260) \times (1/\epsilon = 20) \times (M/m = 500) \times (B_{\sigma_s}/B_{\sigma_b} = 1)^{1/2} = 2.5 \times 10^6$$

・ ロ ト ・ 四 ト ・ 回 ト ・ 回 ・ う へ ()

- Tm-containing Bolometer Project

LNGS cryogenic setup

Tm-containing Crystals

- NaTm(WO₄)₂ & NaTm(MoO₄)₂ crystals were grown in Novosibirsk State University (Russia).
- Growth: Kyropoulos method, from the flux of Na₂WO₄ and Na₂MoO₄
- Crystal dimensions: $\sim 5 \times 5 \times 5$ mm.

▲□▶▲□▶▲□▶▲□▶ □ のQで

• ¹⁶⁹Tm mass is ~ 200 mg per crystal.

- Tm-containing Bolometer Project

LNGS cryogenic setup

LNGS Cryostat (CUORE-0 R&D)

- ${}^{3}\text{He}/{}^{4}\text{He}$ dilution refrigerator ($T \sim 10^{-3}\text{K}$)
- Background suppression:
 - High purity copper structure
 - Underground location: $\simeq 3650$ m of water equivalent
 - Passive shielding

Tm-containing Bolometer Project

LNGS cryogenic setup

Tm-crystal Bolometric Setup

- NTD Ge thermistor coupled to crystal surface for heat signal readout.
- Signal digitized by 18-bit ADC.
- Software trigger.
- Pulse shape confirms that crystals do work as bolometers.

- Tm-containing Bolometer Project

LNGS cryogenic setup

Preliminary Measurements

- Background spectra were collected during 135.2 hours.
- Unable to achieve proper energy calibration (unfortunatelly)
- Consider all background events to be axion-induced for estimation.

Limit Estimation

$$g_{Ae} \sim 10^{-16}, g_{A\gamma} \sim 10^{-15}$$

Even conservative estimation shows improvement of the limit strength $\sim \times 10.$

イロト 不得 とうほう イヨン

ъ

Tm-containing Bolometer Project

LNGS cryogenic setup

Axion Limit Estimation

With target of 1 kg ¹⁶⁹Tm equivalent it is possible to obtain 10² limit improvement

・ロト・日本・日本・日本・日本・日本

- Summary

Summary

- **Resonant absorption detection techniques** allow us to design relatively high-sensitivity setups with reasonable mass/dimensions of the target.
- The ability of Tm-containing crystals to function as a bolometer was confirmed. Also, it is a **perfect way to introduce significant amounts of Tm into the active detector volume**, greatly increasing registration efficiency of potential axion-induced events.
- Altogether, the underground (LNGS) cryogenic setup with the **Tm-containing bolometer** (1 kg of ^{169}Tm equivalent) will **allow us to achieve** $\times 10^2$ -fold improvement over the current axion limits for g_{Ae} and $g_{A\gamma}$.
- Outlook
 - At the moment, new crystal growth crucible (d = 20 mm) is being shipped to NSU for production of a larger crystals.