

0 4 Works SPES ເບ C 0 •---4 $\mathbf{\overline{v}}$ lntern Third

, Italy 2016 (Padova) 10-12, aboratori Nazionali di Legnaro October

Survey of the main experimental setups for low energy ISOL physics

Stéphane Grévy

0 Works SPES ____ ເບ 9 0 •---4 ເບ lntern Third

2016 ltaly Padova 2 ġ October di Legnaro aboratori Nazionali

Survey of the main experimental setups for low energy ISOL physics

- 1. Beta decay spectroscopy
 - general motivations
 - experimental requirements
 - examples
- 2. Laser assisted spectroscopy
 - general motivations
 - experimental requirements
 - examples
- 3. Trap assisted spectroscopy
 - general motivations
 - experimental requirements
 - examples

Ο 0 4 Works SPES ____ ເບ 2 0 •-----ເບ lntern Third

, Italy <u>October 10-12, 2016</u> (Padova) aboratori Nazionali di Legnaro

Survey of the main experimental setups for low energy ISOL physics

- 1. Beta decay spectroscopy
 - general motivations
 - experimental requirements
 - examples

- most of the nuclei decay by β^+ or β^-

~260 stable \sim 3000 \rightarrow 6000 β -decay ~100 fission

- often the primary source of information about newly identified nucleus
 - $T_{1/2}$, P_n , Q_β value
 - Spin, excited states
 - Full spectroscopy

- \rightarrow few decays per day
- \rightarrow few decays per second
- \rightarrow 100/1000 decays per second
- understanding of the creation of the heaviest elements in explosive stellar processes
- study of fundamental interactions
- important for applications
 - for nuclear reactors : 7-8% of the heat is generated by radioactive decay of fission products

Stéphane Grévy

Beta decay pattern

Near the stability \rightarrow small Q_{β} -values \rightarrow decay schemes simple, few states are populated

In exotic nuclei \rightarrow large Q_{β} -values

→ wider range of states can be populated
→ can access to a "large" fraction of the GT strength

ightarrow constraints on the detection system

→ need for complementary and sophisticated experimental setups

Detectors

Spectroscopy of low lying discrete states :

- charged particles (β 's, e⁻, p...) \rightarrow PI; Si
- -γ-rays
 - \rightarrow Ge array for energy resolution
 - ightarrow Fast scintillators for timing properties
- delayed neutrons
 - ightarrow ³He counters, Liquid scintillators, Plastics...

Measurement of the GT strength :

- Total Absorption Spectrometer
 - ightarrow use of large scintillator crystals viewed by PM's

Ancillary systems

- Fast tape system
 - \rightarrow measurement of T_{1/2}
 - → removal of daughter activities
- Purification devices
 - ightarrow magnetic separators (HRS), Penning traps, MR-TOF-MS

1- Beta decay studies : examples

Stéphane Grévy

BEDO/TETRA setups @ ALTO/IPN Orsay

 $\stackrel{\text{lsoL}}{\rightarrow}$ ISOL installation based on photo fission $\stackrel{\text{lso}}{\rightarrow}$ 10¹¹ fission/sec in the target

BEDO setup in gamma mode 4 small EXOGAM clovers

IPN, coll. CSNSM, IPHC

BEDO setup in neutron mode Dubna neutron detector TETRA

IPN, coll. JINR (Russia), IPHC

BEDO setup fast timing mode LaBr3

IPN, coll. CSNSM, TANDAR (Argentina), INRNE (Bulgaria)

courtesy of D. Verney

Stéphane Grévy

E_x (MeV)

Stéphane Grévy

ToF_n (ns)

1- Beta decay studies : Lol's@SPES

LoIs Presentation 1

Convener: Giovanni Pollarolo (University of Torino)

- 17:00 Studies of pair transfer processes with the SPES beams PRISMA 13' Speaker: Lorenzo Corradi (INFN LNL)
- 17:13 **Sub-barrier fusion of exotic neutron-rich nuclei** 13' Speaker: Alberto Stefanini (INFN LNL)
- 17:26 **Pre-equilibrium processes and exotic systems as a tool to study clustering structure effects on nuclear dynamics** *13'* Speaker: Tommaso Marchi (KU Leuven)
- 17:39 Study of the population of heavy neutron-rich nuclei in the A~200 mass region via multinucleon transfer reactions *13*' Speaker: Enrico Fioretto (INFN LNL)
- 17:52 Neutron-rich heavy nuclei explored via multinucleon transfers 13' Speaker: Dr. Suzana Szilner (Ruder Boskovic Institute)
- 18:05 Dissipative collisions with n-rich SPES beams 13' Speaker: Giovanni Casini (INFN Firenze)
- 18:18 Transfer studies in neutron-deficient nuclei with the neutron detector array NEDA 13' Speaker: Jose' Javier Valiente Dobon (INFN LNL)
- 18:31 Electromagnetic moment measurements with radioactive ion beams using GALILEO Gamma-ray array 13'

Speaker: Asli Kusoglu (Istanbul University)

- 09:00 Compound Nucleus Decay with light beams provided by SPES 13' Speaker: Mauro Bruno (Bologna University)
- 09:13 A Dedicated Gas Jet Target for Radioactive Ion Beam Studies at SPES 13' Speaker: Steven Pain (Oak Ridge National Laboratory)
- 09:26 Measurement of the decay characteristics of nuclei around A=90 relevant to the r-process nucleosynthesis 13'

Speaker: Teresa Kurtukian Nieto (CENBG)

- 09:39 Isospin dependence of compound nucleus formation and decay 13" Speaker: Giuseppe Politi (Catania University)
- 09:52 Study of proton-neutron balance of quadrupole-collective states of even-even neutron rich Te, Xe and Ba isotopes 13'

Speaker: Christian Stahl (IKP, TU Darmstadt)

10:05 Nuclear structure of neutron-rich nuclei determined through beta decay spectroscopy of fission fragments 13'

Speaker: K.P. Rykaczewski (Oak Ridge National Laboratory)

- 10:18 Shape coexistence in Kr isotopes towards N = 60 13' Speaker: Victor Modamio Hoybjor (Oslo University)
- 10:31 Set-up for Coulomb-excitation measurements of Radioactive Ions 13" Speaker: Adriana Nannini (INFN Firenze)
- 10:44 Low-lying dipole excitations via nuclear probes in exotic nuclei 13' Speaker: Fabio Celso Luigi Crespi (Milano University)
- 10:57 Pygmy Dipole States in Neutron-rich Zr and Kr Isotopes Investigated with Beta Decay

Speaker: Fabio Celso Luigi Crespi (Milano University)

- 11:10 Dynamical Dipole Resonance with SPES 13' Speaker: Silvia Piantelli (INFN Firenze)
- 11:40 Measurement of astrophysical relevant reactions induced by alpha, protons and neutrons at the Gamow peak using the Trojan Horse method 13' Speaker: Sara Palmerini (Perugia University)
- 11:53 Shape coexistence and N=50 gap: transfer reactions on ground and isomeric states 13' Speaker: Andrea Gottardo (IPN-Orsay/IN2P3)
- 12:06 Shell structure and collective excitations and resonances at and beyond N=50 with decay spectroscopy 13' Speaker: Andrea Gottardo (IPN-Orsay/IN2P3)

LoIs Presentation 4

Convener: Krzysztof Rusek (University of Warsaw)

- 14:40 Search for deformed structures in 96Y and 97Y by gamma spectroscopy andcluster transfer reactions with a 95Sr SPES beam 13' Speaker: Lukasz Iskra (Institute of Nuclear Physics PAN)
- 14:53 Search for structures built on the isomeric 0+ state in 96Sr 13' Speaker: Silvia Leoni (Milano University)
- 15:06 Structure of Sb nuclei around 132Sn as a testing ground for realistic shell model interactions 13' Speaker: Silvia Leoni (Milano University)
- 15:19 Heavy-ion binary reactions as a tool for detailed gamma spectroscopy in exotic regions 13'

Speaker: Silvia Leoni (Milano University)

- 15:32 Exploring shape coexistence, triaxiality and configuration mixing in 90,92Kr 13' Speaker: Katarzyna Hadynska-Klek (INFN LNL)
- 15:45 Study of beta-decay properties of neutron-rich isotopes approaching the r-process path 13'

Speaker: Dmitry Testov (Padova University)

- 15:58 Study of the Dynamical Dipole mode with the SPES radioactive ion beams 13' Speaker: Concetta Parascandolo (INFN Napoli)
- 16:11 Electron conversion measurements at SPES 1+ beam line: measurement of E0 transitions in 96Sr 13'

Speaker: Barbara Melon (INFN Firenze)

16:44 Measurements at SPES on beta-decay properties of nuclei belonging to the s-process path 13'

Speaker: S. Cristallo (INAF)

16:57 Exploring the Z=32 triaxiality corridor towards N=50 via safe Coulomb excitation at SPES 13'

Speaker: Magda Zielinska (CEA Saclay)

17:10 Study of the shell structure and order-to-chaos transition in warm rotating nuclei with the radioactive beams of SPES 13'

Speaker: Giovanna Benzoni (INFN Milano

- 17:23 Beta-decay studies at SPES 13' Speaker: Giovanna Benzoni (INFN Milano)
- 17:36 **Probing the Island of Stability with SPES beams** 13' Speaker: Emanuele Vardaci (Napoli University)
- 17:49 Studies of Proton-Rich Nuclei Using Fusion-Evaporation Reactions with 7Be Beams and NEDA 13'

Speaker: Johan Nyberg (Uppsala University)

- 18:02 Collectivity vs spin using direct reactions 13' Speaker: Francesco Recchia (Padova University)
- 18:15 Shell structure in the vicinity of 132Sn with an active target 13' Speaker: Tommaso Marchi (KU Leuven)
- 12:19 Coulomb-excitation measurements in nuclei around 132Sn 13' Speaker: Marco Rocchini (INFN Firenze)
- 12:32 Direct Reactions at SPES: Shell Evolution and Nuclear Astrophysics around Z~50 and N~82 13^\prime

Speaker: Daniele Mengoni (Padova University)

- 12:45 Transfer reaction measurements at SPES for r-process nucleosynthesis 13' Speaker: Steven Pain (Oak Ridge National Laboratory)
- 12:58 Measurements at SPES of n-capture cross sections on radioactive nuclei interesting for s-process nucleosynthesis 13' Speaker: Oscar Trippella (Perugia University)

Stéphane Grévy

TAS setup Lucrecia @ ISOLDE/CERN

courtesy of B. Rubio

Stéphane Grévy

1- Beta decay studies : examples

TAS setup Lucrecia @ ISOLDE/CERN

E. Nacher et al., PRL.92, 232501 (2004)

A. Pérez-Cerdán et al. PRC88 (2013) 014324

Stéphane Grévy

0 4 Works SPES ____ ເບ 9 0 •------ເບ Intern Third

2016 , Italy (Padova) 10-12, aboratori Nazionali di Legnaro October

Survey of the main experimental setups for low energy ISOL physics

2. Laser assisted spectroscopy

- general motivations
- experimental requirements
- examples

2- Laser spectroscopy : general motivations

Laser spectroscopy allows to determine fundamental properties of nuclei (gs or long lived isomers) from the knowledge of the energy of the atomic levels.

nuclear shape/deformation in ground and isomeric states

NB: the laser spectroscopy methods are well suited for nuclear states with $T_{1/2}$ in the range of msec to sec \rightarrow particularly well suited for ISOL facilities

Stéphane Grévy

Two main laser spectroscopy methods :

Development of the "in jet laser spectroscopy", resolution around 150 MHz (S3-LEB)

Stéphane Grévy

2- Laser spectroscopy : experimental considerations

Stéphane Grévy

2- Laser spectroscopy : experimental considerations

Collinear Resonance Ionization Spectroscopy

Stéphane Grévy

Stéphane Grévy

ARTICLES

PUBLISHED ONLINE: 8 FEBRUARY 2016 | DOI: 10.1038/NPHYS3645

Ekström^{4,5}, N. Frömmgen⁶, G. Hagen⁴, M. Hammen⁶,

Blaum³, A.

Bissell^{1,2}, K.

Garcia Ruiz^{1*}, M. L.

цĽ,

Hebeler^{7,8}, J. D. Holt⁹,

ப் ட

G. R. Jansen^{4,5}, M. Kowalska¹⁰, K. Kreim³, W. Nazarewicz^{4,11,12}, R. Neugart^{3,6},

Neyens¹, W. Nörtershäuser^{6,7}, T. Papenbrock^{4,5}, J. Papuga¹, A. Schwenk^{3,7,8}, J.

A. Wendt^{4,5} and D. T. Yordanov^{3,13}

Simonis^{7,8},

2- Laser spectroscopy : recent results

Unexpectedly large charge radii of neutron-rich calcium isotopes

Stéphane Grévy

2- Laser spectroscopy : future developments

Stéphane Grévy

, Italy <u>10-12, 2016</u> (Padova) aboratori Nazionali di Legnaro October

Survey of the main experimental setups for low energy ISOL physics

- 3. Trap assisted spectroscopy
 - general motivations
 - experimental requirements
 - examples

3- Trap assisted spectroscopy : general motivations

Traps are used in many domains of physics and in particular :

- nuclear structure \rightarrow precision measurements
- test of fundamental interactions
- ion beam manipulation \rightarrow RFQ's and ultra high mass separation

Stéphane Grévy

3- Trap assisted spectroscopy : experimental considerations

Traps in nuclear physics

3 independent motions at 3 eigenfrequencies

Stéphane Grévy

Penning trap

2- Trap assisted spectroscopy : mass measurements

2- Trap assisted spectroscopy : trap assisted spectroscopy

- trap assisted spectroscopy and purification devices

→ Penning trap as high-resolution mass separator to prepare state-selected pure sample *Pionner work @ JYFLTrap*

TASISpec with SHIPTRAP @ GSI

selection

accumulation

- Clean spectra
- Detailed nuclear structure information

PIPERADE @ SPIRAL2

- ✤ totally pure samples
- Purify very large samples of ions
 - 10^{5} ions/bunch; ~10Hz \rightarrow > 10⁶ ions/s

(Large ratio contamination/ions of interest)

"Fast" cleaning process (50 – 500 ms)

Souble Penning trap system

Third International SPES Workshop - Padova, october 10-12, 2016

PERADE @ CENBG

Stéphane Grévy

MAGNETIC FIELD STRENGTH ALONG THE TRAP AXIS

C. Weber et al., Int. J. Mass Spectrom. 349-350, 270 (2013) C. Weber et al., Nucl. Instr. Meth. B 317, 532 (2013)

- \succ "detector trap": α -detectors act as trap electrodes
- Customized α-detectors were developed and characterized for the cryogenic and UHV-conditions (Si-strip detector, 30x30 mm², 30 strips, α resolution ~ 20 keV)

Beta delayed neutron using a transparent Paul trap

- in-trap spectroscopy

Test of fundamental interactions

LPCTrap@SPIRAL...

Stéphane Grévy

0 Works PES S ____ $\overline{\mathbf{v}}$ 0 •---4 ເບ L L te 2 Third

Conclusions

, Italy

(Padova)

October di Legnaro

Laboratori Nazionali

10-12, 2016

Survey of the main experimental setups for low energy ISOL physics

- 1. Beta decay setups
- 2. Laser setups

BESTIOL : BEta decay STudies at the SPIRAL2 IsOL facility

LUMIERE : Laser Utilization for Measurement and Ionization of Exotic Radioactive Elements Collinear laser spectroscopy (CRIS-Like), Optical pumping line (LINO project at ALTO) and Laser spectroscopy with ConeTrap

DETRAP DESIR-TRAP

In-trap decay studies, mass measurements and trap-assisted spectroscopy

Workshop SPES ____ tiona Interna Third

October 10-12, 2016 Laboratori Nazionali di Legnaro (Padova), Italy

Grazie per la vostra attenzione Thank you for your attention Merci pour votre attention