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Ingredients for the Shell Model 
calculations 

1) an inert core 
2) a valence space 
3) an effective interaction that mocks up 
the general hamiltonian in the restricted 
basis 
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The choice of the valence 
space is determined by the  
degrees of freedom of the 
system and limited by the 
dimensions of the matrices to 
be diagonalized 
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The effective interaction 

Mmeff VVV +=
A multipole expansion 

monopole Multipole 

mV
 represents a spherical mean field extracted  
     from the interacting shell model  
 determines the single particle energies  
     and the shell evolution 

- correlations 
- energy gains  

Deformation 

MV
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The multipole interaction 

The multipole interaction is responsible  
of the collective behaviour  

The main components are: Pairing and Quadrupole  
 

Pairing dominates in semi-magic nuclei  superfluidity 
 
When quadrupole correlations dominate  deformation 
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Interplay: Monopole and Multipole 

7 

The interplay of the monopole with the multipole terms,  
like pairing and quadrupole, determines the different 
phenomena we observe.  
 
 
In particular, far from stability new magic numbers 
appear and new regions of deformation develop giving 
rise to new phenomena such as: 
• islands of inversion 
• shape phase transitions 
• shape coexistence 
• haloes, etc. 
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Development of deformation 
and Islands of Inversion 
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Why nuclei deform? 
The spherical nuclear field is close to the harmonic 
oscillator potential. 
 
In the limit of degeneracy of the single-particle energies 
of a major harmonica oscillator shell,  and in the 
presence of an attractive Q.Q proton-neutron 
interaction, the ground state of the many-body nuclear 
system is maximally deformed    
 
Elliott SU(3) in the sd shell  

So, at low energy, nuclear states tend to  
maximize the intrinsic Quadrupole moment  

where the principal quantum number   𝑁 = 𝑛𝑥 + 𝑛y + 𝑛𝑧  

𝑄0 = (2𝑛z − 𝑛x − 𝑛y) 
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Example in the sd shell 

The “intrinsic orbits” in SU3  

 start filling from below  prolate deformation 
 start filling from above  oblate deformation 

Intrinsic states are the determinants 
obtained by filling these fourfold 
(2p+2n) degenerate “orbits” 

In the sd shell N = 2 
there are 6 possible states: 
(2,0,0) (0,2,0) (0,0,2) 
(1,1,0)(1,0,1)(0,1,1) 

𝑄0 = 2𝑛z− 𝑛x − 𝑛y  
 
 
𝑄0 = 4, 1,−2 
 
 

20Ne 

A.P. Zuker et al., PRC 92, 024320 (2015) 
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Extending the Elliott’s SU3 

Elliott’s SU3 is well suited for the sd shell, but fails  
when the SO interaction introduces large energy shifts  

However, some variants of the SU3 symmetry apply in  
specific valence spaces and we will be able to compute  
the quadrupole moments in these framework: 
 
The Quasi SU3 and the Pseudo SU3  

A.P. Zuker, A. Poves, F. Nowacki, S.M. Lenzi, 
PRC 92, 024320 (2015) 

A. P. Zuker, J. Retamosa, A. Poves, and E. Caurier, 
PRC 52, R1741 (1995). 
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SU3 approximate symmetries 

Quasi SU3  
applies to the lowest Δj = 2, Δℓ = 2  
orbits in a major HO shell   

40 

d3/2 

g7/2 

d5/2 
g9/2 

s1/2 

qu
as

i N=4 

Pseudo SU3  
applies to a HO space where the  
largest j orbit has been removed. 
  

p3/2 

p1/2 

28 

f5/2 

f7/2 

N=3 ps
eu

do
 

Two variants of SU3 apply in specific spaces 

A.P. Zuker et al., PRC 92, 024320 (2015) 
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Quadrupole moments in Pseudo SU3 
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We obtain Q0 by summing those  
of the single particles/holes in each “orbit” 

Q0= 20  60Zn 

A.P. Zuker et al., PRC 92, 024320 (2015) 
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Quadrupole moments in Pseudo SU3 
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We obtain Q0 by summing those  
of the single particles/holes in each “orbit” 

Q0= 26 
64Ge 

A.P. Zuker et al., PRC 92, 024320 (2015) 
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Quadrupole moments in Pseudo SU3 
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p1/2 

28 

f5/2 

f7/2 

N=3 

p
se

u
d

o
 

We obtain Q0 by summing those  
of the single particles/holes in each “orbit” 

Q0= 26 triaxial 
64Ge 

A.P. Zuker et al., PRC 92, 024320 (2015) 
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Quadrupole moments in Pseudo SU3 
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We obtain Q0 by summing those  
of the single particles/holes in each “orbit” 

Q0= 30 

68Se 

A.P. Zuker et al., PRC 92, 024320 (2015) 
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Quadrupole moments in Pseudo SU3 

p3/2 

p1/2 

28 

f5/2 

f7/2 

N=3 

p
se

u
d

o
 

We obtain Q0 by summing those  
of the single particles/holes in each “orbit” 

Q0= -30 
68Se shape  

coexistence 

A.P. Zuker et al., PRC 92, 024320 (2015) 
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Quadrupole moments in Quasi SU3 

We obtain Q0 by summing those  
of the single particles in each “orbit” 
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A.P. Zuker et al., PRC 92, 024320 (2015) 
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Maximizing quadrupole correlations 

 
 

-2 
 

0 
 

2 
 

4 
 

6    
   

   
   

   
  Q

0/b
2 

   
   

   
   

   
   

   
   

   
   

   
 

pseudo SU3 for fp space 

s1/2 
d5/2 
g9/2 

40 

quasi 
SU3 

pseudo 
SU3 

f5/2 
p 

ps
eu

do
 

qu
as

i 

The particles in the 
pseudo + quasi  
space maximize the 
quadrupole moment.   

The quadrupole correlation energy  
results much larger than the energy 
cost to promote the particles 
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Maximizing quadrupole correlations 
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Islands of inversion and symmetries 

Islands of Inversion at 
the magic numbers  
can be understood in 
terms of dynamical 
symmetries 
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Shape evolution along isotopic chains 

T. Marchi et al., PRL 113, 182501 (2014) 

Both excitation energies and transition  
probabilities are well described by SM  
in the pseudo+quasi SU3 model space 

Effective interactions: 
 
LNPS: Lenzi, Nowacki, Poves, Sieja,  
 PRC 82, 054301 (2010). 
Vlow k: Coraggio, Covello, Gargano, Itaco,  
 PRC 89, 024319  (2014). 
A3DA: Tsunoda, Otsuka, Shimizu, Honma, Utsuno, 
 PRC 89, 031301 (2014). 

Ni 
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Extension of the IoI from N=40 to N=50 

Shell model calculations by 
F. Nowacki et al., arXiv:1605.05103v1  (2016) 
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Extension of the IoI from N=40 to N=50 

Shell model calculations by 
F. Nowacki et al., arXiv:1605.05103v1  (2016) 
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Coupled-cluster calculations 
by Hagen et al.,  
arXiv:1605.01477v1 (2016) 
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Deformation at Z~40 

T. Togashi et al, arXiv:1606.09056v1, 
accepted in PRL (2016) 
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Similar to what happens in N~40 south of 68Ni 

Sudden shape transition at N=60 in Zr isotopes 
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Islands of Inversion 

N=40 

Z=40 

N=60 Z=28 

Z=20 N=50 

N=28 

N=20 

N=8 

Variants of SU3 dynamical 
symmetries are the choice to 
describe quadrupole deformation 



Silvia Lenzi  - SPES Workshop, LNL, 10-12 October, 2016 

Single-particle properties  
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Effective single-particle energies  
The effective single-particle energies and their evolution as a function of N/Z 
are essential ingredients to determine the development of new magic 
numbers, the disappearance of the traditional ones or their robustness  

20 

16 

T. Otsuka et al.,  
PRL 104, 012501 (2010) 

The single-particle energies are not an observable 
but can be deduced from spectroscopic factors and 
the energy of the nuclear states around closed 
shells. 
 
Transfer reactions in inverse kinematics are one of 
the ideal tools to study the single-particle behaviour 
far from stability. 

The mechanism of this evolution is not well understood  
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Single particle energies above N=50 

Sr88 
Rb87 
Kr86 
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Se84 
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Ge82 
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Ge76 Ge74 
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Br79 Br81 
Kr78 Kr80 Kr82 Kr83 Kr84 

Rb85 
Sr86 Sr87 Sr84 

Zr91 Zr93 Zr92 Zr92 Zr93 Zr94 Zr95 Zr96 

50 

the case of the light 
N=51 odd  isotones 

Discrepancies in the prediction of 
the evolution of ESPE energies  
for neutron-rich nuclei   

D. K. Sharp et al.,  
PRC 87, 014312 (2013) 

J. Duflo and A.P. Zuker,  
PRC 59, R2347 (1999) 

K. Sieja et al.,  
PRC 79, 064310 (2009) 

Effective s.p. energies  

Courtesy of A. Gottardo 

The isotones N=51 can give valuable information to deduce the s.p. energies 
around N=50. Several observables need to be measured. 
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Characterizing the s.p. states  

(1/2+)? 

S=0.84 

S=0.49 

S=0.016 

2+ even-even 
core 

Courtesy of F. Didierjean  
and  A. Gottardo 

2+
 ⨂

 ν
d 5
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0+ ⨂ νg7/2 
The 7/2+ state stemming from νg7/2 
is predicted to become yrast along 
the N=51 line towards 79Ni 
 distinguish between 7/2+ from 
g7/2 and core-coupled 2+ ⨂ d5/2 

Importance of disentangling the nature of the 7/2- states for the isotones N=51  
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The 132Sn region 

133Sn 

133Sb 

131Sn 

131In 

134Sn 130Sn 

N 
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ν π 

ν−1π −1 ν  π−1 

ν−1 π 

132Sn 

The region around 132Sn is the heaviest 
doubly-closed shell region 
experimentally accessible today  

Ideal ground to test 
nuclear models  and to 
ascertain their capability  
to provide reliable 
predictions for nuclei 
which are still inaccessible 
for present experiments  
 

Courtesy of A. Gargano 

Exp 
Theo 

Excited states in Sn isotopes 

Recent shell model calculations using  
a realistic interaction by the Napoli group 
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Evolution of the s.p. energies 
around 132Sn  

0.84 

0.94 

0.52 

0.33 

0.43 

C2S (137Xe)Expt  

Experimental information is available only for 137Xe  

states with the largest spectroscopic factor 

Courtesy of A. Gargano 

neutrons protons 
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Coupling s.p. to collective states 
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•Low spin states may come from the 
coupling of the odd proton to 2+, 3-, 4+ 
phonons in 132Sn. 
 

•High spin states can only come from πg7/2 
coupled to h11/2

-1 f7/2 neutron p-h states. 

G. Bocchi et al 
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Start from a basis 
made up with 
particles (or holes) 
around a core, and 
with excitations of 
the same core. 

Diagonalize the 
Hamiltonian  

H = T + V 

 

Hybrid Configuration-Mixing Model  

     1/2    3/2    5/2      7/2    9/2    11/2  13/2  15/2  17/2  19/2  21/2  23/2  25/2  
SPIN 

0.92 

0.96 
0.94 

0.76 

0.8 

spec. factors  

single  
particle  
states 

ν(f7/2h-1
11/2) ⊗ π(g7/2) 

πg7/2⊗phonon 
Mixed 

HYBRID Model 

experiment 

E 
[M

eV
]  

 
6 
 
5 
 
4 
 
3 
 
2 
 
1 
 
0 

Goal: treat cases in 
which states have 
mixed character, 
namely they can be 
particle states, 2p-1h, 
…, particle-phonon 
states. 

133Sb 

Courtesy of G. Colò 

by G. Colò and P.F. Bortignon 
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Halo orbits 
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Halo orbits and charge radii 
Rπ Rν 

neutrons filling f7/2 filling p orbits 

C
ha
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 (f

m
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K 

Why the charge radius does not 
increase when filling f orbits 
and increases when filling p orbits?  
Because p orbits are MUCH LARGER than f orbits! 

no-core realistic shell model 
calculations by  
J. Bonnard et al.,  
PRL 116, 212501 (2016) 

It is found that the radial difference may arrive to ~ 1 fm in the fp shell!  

The increase of the size of charge radii along an 
isotopic chain (or isotope shifts) reflects the orbital 
occupancies associated with low-ℓ orbits 
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Low ℓ orbits and halo character 
In the sd shell the difference between rms  
radii of s and d orbits reaches 1.6 fm!  

J. Bonnard et al., 
arXiv:1606.03345v1  (2016) 
No-core shell model calculations 
with chiral realistic interaction. 

R
(s

) –
 R

(d
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) 

r 

ρ 

Neutron skin 
 

These investigations have a large impact  
also in the estimate of neutron skins… 

…mirror symmetry and  
Coulomb energy differences 

…development of  
pygmy resonances 

Rν - Rπ 
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Conclusions and perspectives 
The structure of exotic nuclei presents a richness of phenomena that   
put in evidence the effects of subtle terms of the effective interaction 

Dynamical symmetries help to interpret the development of deformation 
and the Islands of Inversion near “traditional” magic numbers. 
They indicate the “smart” model spaces to be considered by SM 
calculations. 

The position and evolution of single-particle energies give information  
on the existence and development of shell closures. 

Different theoretical models, based on EFT interactions, EDF, ab initio 
are becoming available in some mass regions.  

SPES beams will allow to perform detailed 
spectroscopy to achieve a much deeper 
understanding of the underlying nuclear force 
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