Hints on the effective interaction from low energy reaction dynamics (EOS studies with SPES)

3rd International SPES Workshop

October 10-12, 2016 LNL, Legnaro

Maria Colonna

INFN - Laboratori Nazionali del Sud (Catania)

Dissipative reaction mechanisms, involving heavy ions, can probe several aspects of the nuclear effective interaction and nuclear EOS

Outline

■ The tool: mean-field models (TDHF, Vlasov, SMF) and effective interactions

- Some examples of suitable low-energy (E/A ~ 5-10 MeV/A)
 reaction mechanisms
- Covariance analysis:
 Sensitivity of selected observables to specific ingredients
 of the effective interaction

Mean-field models and effective interactions

One-body description
$$i\hbar \frac{\partial}{\partial t} \rho_1(t) = [H_{\text{eff}}, \rho_1(t)] + K(\rho_1) + \delta K(\rho_1, \delta \sigma)$$

$$\rho_1 : \text{one-body density}$$
TDHF

ETDHF

semi-classical approximation

$$\frac{\partial f(r, p, t)}{\partial t} + \{f, H_{eff}\} = k_{l}[f] + \delta k$$
Vlasov
BUU, SMF

Residual interaction: in-medium NN cross section σ_{NN} 2-body correlations, Fluctuations

 H_{eff} : effective Hamiltonian

• Expectation value of physical quantities :

$$E = \left\langle \Psi \middle| \hat{H} \middle| \Psi \right\rangle$$

$$\approx \left\langle \Phi \middle| \hat{H}_{eff} \middle| \Phi \right\rangle = E[\hat{\rho}]$$

- Effective interactions are phenomenological (ex: **Skyrme** interactions, ...)
- Fitted parameters incorporate the effects of correlations beyond mean-field

functions of isoscalar, spin, isospin densities, currents ...

DTF, Nuclear matter EOS

The nuclear Equation of State (T = 0)

Energy per nucleon E/A (MeV)

Symmetry energy E_{sym} (MeV)

predictions of several effective interactions

symm. matter

symm. energy

$$\beta = asymmetry parameter = (\rho_n - \rho_p)/\rho$$

analogy with Weizsacker mass formula for nuclei (symmetry term)! expansion around normal density

$$E_{sym}(\rho) = S_0 + L \frac{\rho - \rho_0}{3\rho_0} + \dots$$

 $25 \le J \le 35 \text{ MeV}$ $20 \le L \le 120 \text{ MeV}$

Low-energy reaction mechanisms: a study within mean-field models

•Fusion vs Quasi fission or Deep Inelastic

Fragmentation

Ternary breaking

Isospin diffusion

Charge equilibration

(Fermi energies)

Fusion vs. Quasi Fission: towards the synthesis of SHE

TDHF calculations

- Fusion probability depends on the deformation/orientation of colliding nuclei
- ➤ Possible summetry energy effects ??

SMF calculations with neutron rich systems

C.Rizzo et al., PRC83, 014604 (2011)

C.Rizzo et al., PRC 90 (2014)

heaviest fragment

Ternary breakup in n-rich systems: Sensitivity to E_{sym} & Multidimensional Analysis

> Dipole excitations in heavy ion reactions (Dyn. Dipole)

TDHF calculations

> Simenel et al, PRC 76, 024609 (2007)

> > + 2-body

collisional damping

014604 (2011)

Initial Dipole D(t): bremss. dipole radiation **Compound: stat. GDR** If $N_1/Z_1 \neq N_2/Z_2$

Relative motion of neutron and proton centers of mass

$$D(t) \equiv \frac{NZ}{A} \left[X_{p}(t) - X_{n}(t) \right] \rightarrow X_{p,n} \equiv \frac{1}{Z, N} \sum_{i} x_{i}^{p,n}$$

-20 -10

0 10 20 30 40 50

D(t)

Dynamical Dipole in heavy ion reactions (DD)

• The restoring force is provided by the symmetry term (as in the standard GDR) probe the symmetry energy in the density conditions and configurations reached along the reaction path

- Cooling mechanism in the formation of SHE
- > Few experimental data: more systematic analysis needed
 - ➤ **Theory**: a more systematic study of the sensitivity of this mechanism to the ingredients of of the effective interaction and two-body dissipation needed

Ground state deformation important ???

35 30 25 MI 20 15 10 35 30 25 MD 25 MD 35 20 15 20 15 20 15 20 15 20 15 30 30 25 MD 35 30 4 Asysoft asystiff asysuperstiff (a) J-L correlations SAMi-J27 SAMi-J31 SAMi-J35 SAMi-J35 (b) 1.5

SAMi-J:

X. Roca-Maza, G. Colò, H. Sagawa, Phys. Rev. C 86, 031306(R) (2012); X. Roca-Maza et al., Phys. Rev. C 87, 034301 (2013).

Skyrme (MI): H.Zheng et al.,

PHYSICAL REVIEW C 94, 014313 (2016)

- free n-n cross section

$$\frac{dP}{dE_{\gamma}} = \frac{2e^{2}}{3\pi\hbar c^{3}E_{\gamma}} |D''(\omega)|^{2}$$

$$P_{\gamma} \approx D_{0}^{2}E_{centr}^{3}\tau_{coll}$$
(damped harmonic oscillator)

DD oscillations: dependence on the effective interaction

- The DD emission looks sensitive to E_{sym} at $\rho=0.6~\rho_{sat}$
- Larger strength seen in the MD case: similar to the enhancement factor in the GDR sum rule

Correlations: observables vs. parameters

A set of 8 parameterizations in SMF simulations:

Skyrme (MI) and SAMi-J31

$$+ \sigma_{NN} = 40 \text{ mb}, *2, /2$$

Observables (A):

DD centroid, D"(ω) integral and N/Z of pre-equilibrium nucleon

emission

Parameters (B):

Symmetry energy slope **L**, effective mass **m*** and NN cross section (cs)

 $\tau_{\rm coll}$: collisional damping time

Covariance analysis

see also Zhang et al, PLB 749, 262 (2015)

$$C_{AB} = \overline{(A_{(n)} - \overline{A})(B_{(n)} - \overline{B})}$$

$$c_{AB} \equiv \frac{C_{AB}}{\sqrt{C_{AA}C_{BB}}}$$

Blue: negative

Red: positive

compare with
$$P_{\gamma}pprox D_0^2 E_{centr}^3 au_{coll}$$

(energy-integrated yield)

Conclusions

Reactions with RIB's open the opportunity to learn about fundamental properties of the nuclear effective interaction, of interest also in the astrophysical context

➤ Low energy collisions:

Reaction mechanisms at the borderline with nuclear structure:

- role of effective interaction, 2-body dissipation
- n-skin, g.s. deformation
- -Competition between reaction mechanisms (n-rich neck dynamics)
- -Pre-equilibrium γ and particle emission

Collaborators: **Hua Zheng** (LNS), **Stefano Burrello** (LNS), V.Baran (University of Bucharest, Romania)