

UNIVERSITÀ DEGLI STUDI DI MILANO

"Nuclear Structure with SPES"

Silvia Leoni

Università degli Studi di Milano and INFN sez. Milano

LNL, 10-12 Ottobre 2016

INTRODUCTION

Peculiarities of SPES

- Production scheme and Yields
- Accelerator Complex and Detection Setups

NUCLEAR STRUCTURE

Where SPES can do very well

- Shell Structure
- Complex Excitations
- Shape Evolution and Coexistence

SPES – Intense Exotic Species

Ground State properties, β -decay spectroscopy Several LOI's (G. Benzoni, INFN-Milano, coordinator)

In-Beam Nuclear Structure

LNL – Accelerator **ALPI** Superconductive LINAC Reactions at 10 MeV/A $(eff_{CB} = 4\%, Trans_{ALPI} = 50\%)$ DAY0: up to 10⁷ pps FULL: up to 10⁹ pps

- Coulex
- Transfer
- Multi-Nuc.Transfer
- Fusion

LNL – Detection Systems (State of the Art)

charged-particle Spectroscopy Si stripped/pixel detectors

neutron identification

PARIS Labr3+Nal gamma spectroscopy

HPGe, scintillators

PRISMA Very Powerful and Complete Experimental Setups ...

Selected Examples ...

Single Particle Levels - PROTONS

Protons Neutrons 126 126 (14 (6) (10) -3p_{1/2} -3p_{3/2}-1i_{13/2} 2f_{5/2} 1h_{9/2} 2f_{5/2} 2f_{7/2} (10) 3p_{3/2} (4) (8 2f_{7/2} - 1h_{9/2} 82 3s1/2 _1h_11/2_3s_1/2 1h_{11/2} (12 -2d_{3/2}-2d. 1g_{7/2} (8) 2d_{5/2} 50 50 $1g_{9/2}$ -2p_{1/2} (2)1f_{5/2} (6) 2p_{3/2} 28 1f7/2 1d3/2 20 (4) (2) (6) 251/2 2S1/2 1d5/2 8 1p1/2 1p_{1/2} (2) (4) 1p. 1p_{3/2} 2 -1s,/2 (2) -1s_{1/2}

<mark>Sb_N = Sn_N + 1</mark>π (³He,d), (α,t)

In_N = Sn_N - 1π (d,³He), (t,α)

PROTON and NEUTRON Single Particle Levels

1. Measurements of single particle ENERGIES

2. Measurements of single particle STRENGTH: Spectroscopic Factors in TRANSFER reactions with light targets

MUTIPLETS of valence nucleons around ¹³²Sn

→ Two-Body Matrix Elements

To locate the MULTIPLETS: γ-spectroscopy of yrast and non-yrast structure

1. Cluster Transfer on ⁷Li target ^ASn +⁷Li \rightarrow ^{A+1}Sb + α +2n σ = 100 mb Inverse kinematics, few MeV/A α tagging + γ array

Weakly Bound

To locate the MULTIPLETS: γ-spectroscopy of yrast and non-yrast structure

2. Multi-Nucleon Transfer with Heavy lons

^ASn (7 MeV/A) + ²⁰⁸Pb/²³⁸U

Extensively used with Stable-Beams (LNL,GANIL) Tested at SPIRAL1, Milano-Orsay Coll. , EPJA 45, 287–292 (2010)

To probe the properties of the MULTIPLETS: $B_{EXP}(EM,\lambda)$ versus THEORY

1. Coulomb Excitation

¹³⁴Sn ^{134,135}Sb + ²⁰⁸Pb target ^{126,127}Cd

Direct extraction of $B(E,\lambda)$ Si stripped detector (SPIDER) + γ array

2. Lifetime Analysis

Multi-Nucleon Transfer with Heavy Ions

^ASn (7 MeV/A) + ²⁰⁸Pb/²³⁸U

Plunger technique PRISMA is needed + γ array

 $\tau \div 1/B(EM,\lambda)$

Extensively used with Stable-Beams (LNL, GANIL)

COMPLEX STATES - NOT DOABLE BY SHELL MODEL

(with FROZEN CORE)

Complex, collective excitations dominate Low Lying states in **DOUBLY MAGIC** Nuclei 2⁺, 3⁻,4⁺, ... PHONONS

The Structure of Nuclei with **One valence particle** is influenced by **Couplings with Core Excitation**

1. Fragmentation of single particle strength ... (Quenching of spectroscopic factors)

2. MULTIPLETS of COMPLEX Nature

MULTIPLETS: Relevance of CORE Excitations ¹³³Sb – neutron induced fission on ²³⁵U and ²⁴¹Pu

ILL Grenoble, Milano-Krakow Coll. PLB760, 273 (2016)

SHELL Model may reproduce MULTIPLET energies ... NOT $B(EM,\lambda)$

Relevance of CORE Excitations ¹³³Sb – neutron induced fission on ²³⁵U and ²⁴¹Pu ILL Grenoble, Milano-Krakow Coll. PLB760, 273 (2016)

SHELL Model may reproduce MULTIPLET energies ... NOT $B(EM,\lambda)$

Relevance of CORE Excitations ¹³³Sb – neutron induced fission on ²³⁵U and ²⁴¹Pu ILL Grenoble, Milano-Krakow Coll. PLB760, 273 (2016)

SHELL Model may reproduce MULTIPLET energies ... NOT $B(EM,\lambda)$

New "HYBRID" Model (G. Colò, P.F. Bortignon - Milano) Extended Microscopic Particle-Vibration Coupling Model

 \rightarrow We need complete spectroscopy: Energies, J^{π} and B(EM, λ)

Selected Examples ...

The DIPOLE Response In Nuclei

Pygmy Resonances in STABLE NUCLEI Heavy-Ion Inelastic Scattering: a probe sensitive to the surface

LNL Campaign AGATA + Si Telescopes + Scintillators (LaBr3)

¹⁷O @ 20 MeV/A on ²⁰⁸Pb, ¹²⁴Sn, ⁹⁰Zr, ¹⁴⁰Ce STABLE targets

A NEW OBSERVATION: 124Sn – QUADRUPOLE PYGMY

Multitude of 2⁺ discrete states

A. Bracco, F. Crespi, E.Lanza, Eur. Phys. J. A51 (2015) 99

Concentration of E2 Strength much below the GIANT QUADRUPOLE resonance - In agreement with Quasi-phonon Model predictions -

Pygmy Resonances in EXOTIC NUCLEI

PYGMY in EXOTIC NUCLEI @ SPES Isotopic chains: Sr, Sn, Te, ...

1. Inverse kinematics inelastic scattering

- RIB beam 10-15 MeV/A
- Liquid H, He and solid ¹³C targets

AGATA/GALILEO + Si Telescopes (TRACE)+ Scintillators (LaBr3/PARIS)

90Nb	91Nb	92Nb	93Nb	94Nb	95Nb	96Nb	97Nb	98Nb	99Nb	100 N b	101 N b
89Zr	90Zr	91Zr	92Z1	93Zr	94Zr	95Zr	96Zr	972r	98Zr	992r	100Zr
88Y	89Y	90Y	91Y	92Y	93Y	94Y	95Y	96Y	97Y	98Y	99Y
					_		_	· · · · · · · · · · · · · · · · · · ·			
87 Sr	88Sr	895 0	⁰ S	r) "(9	² SI	P35 (⁴ SI	95Sr	96Sr	97Sr	98Sr
875r 86Rb	885r 87Rb	895 C	90 <mark>8</mark> 89Rb	90Rb	2 <mark>2</mark> 91Rb	92Rb	93Rb	94Rb	965r 95Rb	975r 96Rb	985r 97Rb

Day 0 Beams ^{90,92,94}Sr: 10⁶ – 10⁷ pps

2. γ -spectroscopy after β -decay

if Ω_{β} -value is large ... to be investigated: ⁹⁴Y \rightarrow ⁹⁴Zr (Ω_{β} = 4.9 MeV), ⁸⁶Br \rightarrow ⁸⁶Kr (Ω_{β} = 7.6 MeV)

Need for HRMS !!

Selected Examples ...

Selected Examples ...

The region of most dramatic changes

H. Hua et al., PRC 69, 014317 (2004)

(7615.0

2426.1

4^{497,6} 563.7 2⁹ 351.6 212.1 0⁹ 212.1 0.0 ¹⁰⁰Zr₆₀

(12)

(10) ~

ങ്

4043.4

3328.7 3013.9 7 2730.2 2460.0

(11) 2 873.5

The region of most dramatic changes

⁹⁸Sr

874.0

656.6

461.1

303.1

172.03

15

70

2+

The region of most dramatic changes

- a challenge for theory
- deformation is relevant for r-process location

$$\begin{aligned} \boldsymbol{\tau}_{\beta \, \text{SPH}} &\sim \boldsymbol{7} \times \boldsymbol{\tau}_{\beta \, \text{DEF}} \\ \boldsymbol{P}_{n^{\text{SPH}}} &\sim \boldsymbol{0.5} \times \boldsymbol{P}_{n^{\text{DEF}}} \end{aligned}$$

difficult to extrapolate

To probe nuclear structure in SHAPE evolution region

γ-Spectroscopy of yrast and non yrast states **Electron Spectroscopy for E0**

1. Coulomb Excitation

Spectroscopic Quadrupole moments in Kr, ...

2. Cluster Transfer on ⁷Li target

Intense Sr and Rb beams to probe Y and Sr ^ASr +⁷Li \rightarrow ^{A+1}Y + α +2n ^ARb +⁷Li \rightarrow ^{A+1}Sr + α +2n

3. Multi-Nucleon Transfer with Heavy lons

^ARb, ^ASr (7 MeV/A) + ²⁰⁸Pb/²³⁸U

SPES Beams on ²³⁸U target

Conclusions

\circ The SPES community studies

the most fundamental aspects of Nuclear Structure by particle and gamma spectroscopy in the key regions of ¹³²Sn and ⁷⁸Ni

single particle levels - the builing blocks of the SHELL structure emergence of complex excitations - particle couplings, core excitations ... resonances shapes and deformations

• Strong Interdiciplinarity – Astrophyiscs

o Solid International Collaborations

• State of the art SETUP: AGATA, GALILEO, PRISMA, ...

We are looking forward for SPES beams on target !

**Thank You for the Attention **