

Status of the HIE ISOLDE PROJECT

Karl Johnston

EP-Dept, CERN

ISOLDE Facility

- ISOLDE is the CERN radioactive beam facility
- Nuclei produced via reactions of high intensity high energy proton beam with thick and heavy targets.
- Provides low energy or post-accelerated exotic beams
- Around 50 experiments per year

ISOLDE: Research with Radioactive Nuclei

- Post-accelerated Exps (5.5 MeV/u), - Low Energy (30-60kV) Exps, - Machine elements

Highlights from ISOLDE

nature

Post-accelerator: REX-ISOLDE

Built @ different Universities

- Approved in 1994 as an experiment: "Radioactive EXperiment.."
- First beams @ 2.2 MeV/u in Oct 2001
- Upgrade to 3.1 MeV/u completed in 2004
- REX Universal post-accelerator from He to Ra (A=224)
 100 different beams
- In 2006 a new hall extension in preparation for HIE-ISOLDE

>

nature

NG PEAR-SH

Transfer Reactions @ REX

The HIE-ISOLDE project (2010 -)

Energy: 4.5 – 10 MeV/u Intensity: x4 in power Beam Quality

Strong external contribution for R&D and Machine

Purity & Beam

Quality

Physics at HIE-ISOLDE

The new energy window gives the opportunity to address new physics questions:

HIE-ISOLDE Opportunities:

Reaction	Physics	Optimum energy
(d,p), (³ He,α), (³ He,d), (d,n), transfer	Single-particle configurations, r- and rp-process for nucleosynthesis	10 MeV/u
(³ He,p), (d,α), (p,t), (t,p)	pairing	5-10 MeV/u
Few-nucleon transfer	Structure of neutron-rich and proton-rich nuclei	8 MeV/u
Unsafe Coulomb excitation	High-lying collective states	6-8 MeV/u
Compound nucleus reactions	Exotic structure at drip line	5 MeV/u
Coulomb excitation, g-factor measurements	Nuclear collectivity and single- particle aspects	3-5 MeV/u
(p,p'γ), (p,α),	nucleosynthesis	2-5 MeV/u

Instrumentation

- Miniball + T-REX (upgrade planned) : COULEX + Transfer. (2016) C-REX
- Multipurpose reaction chamber
- CORSET chamber for fusion-fission reactions
- SPEDE: added to Miniball+T-REX
- ISOL Solenoidal Spectrometer: ISS (Hall \rightarrow @ TSR)
- MAYA/ACTAR: resonant scattering + transfer
- Zero type spectrometer
- TSR storage ring

Installation of first Cryomodule in place for 4.3 MeV/u

HEBT installation

Scattering chamber on XT02

1st beam delivered: 22nd October 2015

1st beam of ⁷⁴Zn²⁵⁺ to HIE-ISOLDE Afterwards on ⁷⁶Zn

• HOWEVER: Special beam permit:

operation of cryomodules only during working hours, and not during weekend, power coupler unstable and was heating after extended operation. Also 9-gap amplifier non-optimal.

- Stability of the lasers allowed for night-time operation of Zn → opportunistic REX (2.85MeV/u) run during off-hours.
- Heavy load on the operators but greatly appreciated by the users.
- Demonstration of machine, but impractical for normal useage.

First Coulex experiment at HIE ISOLDE 10/2015

⁷⁴Zn(10⁶ pps) + ¹⁹⁶Pt

(courtesy of Piet van Duppen)

First Coulex experiment at HIE ISOLDE 10/2015

(courtesy of Piet van Duppen)

An unexpectedly long lifetime of $20^{+1.8}_{-5.2}$ ps was measured for the 4⁺ state in ⁷⁴Zn.

Illana Sison, Zielinska to be published

(courtesy of Piet van Duppen)

Installation work: 2016

- Removal of original CM for repair.
- Installation of 2nd CM
- RE-installation of original CM
- Difficult cooling down period, many issues with cryoplant, H20 pollution/Air leaks/Compressor (4 week delay)
- Problem with two cavities.
- Short circuit on solenoid in CM1, but had been dealt with.
- HOWEVER: no heating of RF coupler... → 24/7 operation

2016 REX Start-up

- ✓ Consolidation of the vacuum cryo compressor pumps
- ✓ REX machine now under vacuum (RFQ, IH, 7and 9-Gap structures)

✓ New 9-Gap Amplifier has been installed

Physics campaign for 2016

Coordinator's burden:

- 42 experiments on the books
- 855 shifts outstanding
- Popularity growing: new proposals coming in all the time!
- LS2 (2018-2020) staring us in the face.....

Assuming a stable machine (i.e. 24/7 operation). Define priorities for 2016

Conclusions from HIE-ISOLDE users workshop 1st February 2016

- 24 approved proposals ask for beam time in 2016 → won't be able to serve more than 7
- Full energy range of accelerator up to 6.0 MeV/u \rightarrow 5.5MeV/u
- Mass range from ¹⁸N up to ²²⁸Ra → intermediate masses
- MINIBALL configuration for Coulomb excitation and transfer reactions will be installed for 2016 campaign → going to go with C-REX
- Combination with SPEDE is available after successful stable beam commissioning in summer 2016 \rightarrow tests continuing
- High number of experiments should be provided to user community \rightarrow 6 possible (4 week cooling delay)

Beams 2016: chosen for intensity, and ramping up of A/q etc 110Sn, 80Zn, 142Xe, 132Sn, 9Li, 66Ni

¹¹⁰Sn beams @ 4.5MeV/u: Sept 9th 2016

1 week of operation exceeded 2015 running hours (~ 3 weeks)

Courtesy of corinna Henrich

Celebration of end of Phase I: 28th September 2016

Phase 2: Assembly of CM3, to be installed in 2017

Phase 2: Assembly of CM3, to be installed in 2017

Summary and plans for 2017

- Ongoing commissioning of ISOLDE solenoid spectrometer.
- 1st experiment accepted.
- Installation on 2nd beamline in winter 2017 along with completion of 3rd beamline

- HIE ISOLDE phase one complete.
- First programme of experiments for 2016 now underway.
- In spite of some downtimes, producing interesting new data.
- 3rd Cryomodule to be installed in Spring 2017
- Aim to maximise the physics campaign in 2017.

