

SPES secondary beam planning

A. Andrighetto INFN – Laboratori di Legnaro

SPES Workshop LNL, October 10th, 2016

Talk Overview

I. SPES construction phases & +1 L.E. line planning

II. Status of the RIB sistem

III. First beam for users

IV. Conclusion

III SPES workshop: 10th October 2016

Project construction phases

• **Phase 1. 2016** - Building + First operation with the cyclotron

- NOW!
- Phase 3. 2019-20 From the LRMS to the CB + rom RFQ to ALPI

The Low Energy 1+ beam line ("TIS – Tape System")

Goal: To Have first no-accelerated RIB before end 2019

Alberto Andrighetto

Working plan for the 1+ (TIS – tape system)

Working plan and follow-up for the three main issues listed below:

1) Bunker beam line (proton & RIB)

2) 1+ beam line

3) SPES ISOL laboratories operation

Milestone 2019: first low intensity RIB @ SPES

Planning of Bunker beam line

Planning of 1+ beam line

1+ beam line operation (from TIS to tape system)

WIP for the specific 1+ beam line components

magnetic dipole

electrostatic triplet of quads

tape system

beam diagnostic box

electrostatic dipole

Future Implementations

Tape station for beam characterization

Low intensity beam monitors

MCP & grid beam monitor

Low Energy Experimental Room (not financed yet)

Alberto Andrighetto

Stautus of the RIB complex

The SPES TIS complex

The OFF-LINE fron-end

Laboratories & Organization

TIS unit endurance test:

Tests at high temperature with <u>Joule heating thermal load</u> (1300A target heater, 350A line): heating power ≈ 12 kW > primary proton beam thermal load (≈10 kW)

- ≈ 415 testing hours at high temperature -> ≈ 220 hours at maximum power (12kW)
- <u>79 heating cycles sustained</u> -> 9 with current ramps of 1 s from 0 A to 1300A (!)

to 350A (!)

Plasma ion sources: off-line beam production

Sourface ion sources: off-line beam production

Target materials production and tests

New laboratory for the production of UC_x at Legnaro

Ready for UCx production

Ventilation and fire extinguishing systems are ready, instruments are placed and ready to be used

Alberto Andrighetto

Target material and UCx production

On-line testing of the SPES target material and architecture @ ORNL (2010-2012)
 A0 MeV, 50 nA proton beam on a UCx target

Target materials production and tests

Synthesis of a novel type of UC_x using graphene

Experiment submitted & accepted at Karlsruhe: n. AUL-176 "Study of the use of Reduced Graphene Oxide as source of carbon for UCx-Graphene nanocomposites production"

Final phase (Nov-Dec 2015, JRC-ITU Karlsruhe, ActusLab)

Production of uranium carbide using graphite or graphene as carbon sources

 $\underline{UO_2 + 6C \rightarrow UC_2 + 2C + 2CO}$

Laser Laboratories..

Offline: Spectroscopy

3 Dye Laser @ 10 Hz rep. rate

Online (SS laser): RIB prod.

3 TiSa Laser @ 10 kHz rep. rate

Diagnostic tools:

- Monochromator
- HCL •
- **ToF Mass Spectrometer**

Diagnostic tools:

- **Λ-meter**
- **Alignments System**
- Ion-Beam

Development of the RIB apparatus: resonant laser ionization SPE

Spectroscopy:

- Study of different elements of interest
- Offline-lab with 10Hz dye laser system
- HCL & ToF-MS

New SS laser:

- Defining RIB production laser requirements
- 10 kHz TiSa laser
- New laser lab requirements

Laser FE:

- ToF system
- Hot cavity
- Efficiency
 measurements

The SMO test at LNL

The agv trip

Alberto Andrighetto

The new Chamber Unit Storage

The layout:

Storage cartesian system prototype

ISOL front end: mechanical design upgrades

General remarks for the Front-End design

- Elastomer seals are foreseen only in the fast connection for both the pneumatic and hydraulic loops (maybe VAT valves).
- Hydraulic loops have compatible interfaces for demineralized water (AISI304L/316L copper or AISI304L/316L aluminum) in order to prevent corrosion phenomena.

ISOL front end: general design upgrades

Proton beam line

Collimators

High Power Beam Profiler and Faraday Cup

<u>RIB line</u>

Electrostatic module upgrade for the Wien Filter

Mass resolution improvement from 80 to 140

Upgraded diagnostic boxes

ISOL front end: study of radiation damage on materials

RESULTS of the study on elastomeric vacuum O-rings for the target chamber

- 1. Dosimetry calculations with MCNPX: LNL UniPv UniBs
- 2. Irradiation in a mixed $n+\gamma$ field at **TRIGA reactor: UniPv (LENA)**
- 3. Mechanical and physical tests at MaST Laboratory: UniBs

FOUR TESTED PRODUCTS:

EPDM 2

- ✓ Best price/performance ratio
- <u>Recommended up to 15 days life cycle and beyond</u>

PROSPECTS FOR RDS_SPES ACTIVITIES:

- Experimental study of other components: **lubricants and greases, optical fibers, cable insulators, etc.**
- Possible collaboration with ESS for rad-hard test of materials in reactor n+γ mixed fields

First Beam for users

Alberto Andrighetto

List Beam for users (SPES web-page)

VISIT: https://web.infn.it/spes/index.php/characteristics/spes-beams-7037/spesbeamstable

Rb beams (Surface Ion Source)

Cs beams (Surface Ion Source)

exotic beams for scier

Ba beams (Surface Ion Source)

Sr beams (Surface Ion Source)

exotic beams for scier

Sn beams (Plasma Ion Source)

Sn in Laser Laboratory (Future LIS)

Kr beams (Plasma Ion Source)

Xe beams (Plasma Ion Source)

Beam Selectivity Calculation (using ORNL model)

	Copper (Cu) Z=29						
Isotopes		Half-life (seconds)	Intensity (pps)	Purity (%)			
	69	1,71E+02	9,87E+06	100			
<u> </u>	70	4,50E+00	7,89E+06	100			
	71	1,95E+01	1,69E+07	100			
as(72	6,60E+00	1,39E+07	100			
Ľ	73	3,90E+00	9,17E+06	89			
	74	1,50E+00	3,81E+06	81			

	Kripton (Kr) Z=36						
з I. S	Isotopes	Half-life (seconds)	Intensity (pps)	Purity (%)			
Ĕ	88	1,02E+04	4,04E+09	44			
as	89	1,89E+02	3,99E+09	46			
Ы	90	3,23E+01	4,37E+09	53			

Proton beam: E= 40 MeV , I=200 μA No HRMS

Rubidium (Rb) Z=37						
Isot	opes	Half-life (seconds)	Intensity (pps)	Purity (%)		
	86	1,61E+06	1,90E+09	100		
S.	87	1,50E+18	7,99E+09	100		
<u></u>	88	1,07E+03	2,21E+10	99		
lce	89	9,09E+02	4,75E+10	99		
rfa	90	1,58E+02	9,62E+10	98		
Su	91	5,84E+01	9,62E+10	97		
	92	4,49E+00	5,09E+10	91		
	93	5,84E+00	3,38E+10	90		
	94	2,70E+00	1,37E+10	76		

Strontium (Sr) Z=38						
S Isotopes	Half-life (seconds)	Intensity (pps)	Purity (%)			
94 94	7,53E+01	1,27E+10	79			
JL 95	2,39E+01	3,00E+09	100			
96 Su	1,07E+00	1,57E+07	100			
97	4,26E-01	1,31E+06	100			
98	6,53E-01	6,16E+05	100			
99	2,69E-01	2,80E+04	100			
100	2,02E-01	2,30E+03	100			

Beam Selectivity Calculation (using ORNL model)

44 28 29

			Tin (Sn) Z	2=50				Xenon (Xe)	Z=54	
	lso	otopes	Half-life (seconds)	Intensity (pps)	Purity (%)	I. S	Isotopes	Half-life (seconds)	Intensity (pps)	Purity (%)
		123	1,12E+07	1,28E+10	62	na	135	3,29+04	1,96E+10	44
		125	8,33E+05	3,50E+10	96	ası	137	2,29E+02	9,86E+09	28
	S.	126	3,16E+12	4,21E+10	100	Р	138	8,45E+02	1,01E+10	29
		127	7,56E+03	4,08E+10	100					
	ISe	128	3,54E+03	3,18E+10	100					
		129	1,34E+02	1,75E+10	100		Proton bear	m: E= 40 MeV , I	=200 μA	
		130	2,23E+02	7,89E+09	99		No HRMS			
		131	5,60F+01	3,42E+09	76					
5	<	132	3,97E+01	1,56E+09	100					
			Cesium (Cs) Z=55 🔨		ر م	;	Barium (Ba) Z=56	

	Cesium (CS) Z=55	\mathbf{X}	
Isotopes	Half-life (seconds)	Intensity (pps)	Purity (%)	
131	8,37E+05	8,21E+06	98	
132	5,60E+05	8,94E+07	100	
134	6,52E+07	4,08E+09	99	
135	7,26E+13	1,68E+10	99	
136	1,14E+06	4,96E+10	95	
137	9,49E+08	1,07E+11	93	
138	2,00E+03	1,18E+11	76	
139	5,56E+02	9,77E+10	76	
140	6,37E+01	3,41E+10	54	
141	2,49E+01	1,30E+10	55	
	Isotopes 131 132 134 135 136 137 138 139 140 141	LisotopesHalf-life (seconds)1318,37E+051325,60E+051346,52E+071357,26E+131361,14E+061379,49E+081382,00E+031395,56E+021406,37E+011412,49E+01	LisotopesHalf-life (seconds)Intensity (pps)1318,37E+058,21E+061325,60E+058,94E+071346,52E+074,08E+091357,26E+131,68E+101361,14E+064,96E+101379,49E+081,07E+111382,00E+031,18E+111395,56E+029,77E+101406,37E+013,41E+101412,49E+011,30E+10	Lesium (CS) 2=55 Isotopes Half-life (seconds) Intensity (pps) Purity (%) 131 8,37E+05 8,21E+06 98 132 5,60E+05 8,94E+07 100 134 6,52E+07 4,08E+09 99 135 7,26E+13 1,68E+10 99 136 1,14E+06 4,96E+10 995 137 9,49E+08 1,07E+11 93 138 2,00E+03 1,18E+11 76 139 5,56E+02 9,77E+10 76 140 6,37E+01 3,41E+10 54 141 2,49E+01 1,30E+10 55

tuto Nazionale i Fisica Nucleare

S.	Barium (Ba) Z=56				
е <u>-</u>	Isotopes	Half-life (seconds)	Intensity (pps)	Purity (%)	
fac	141	1,10E+03	1,61E+10	43	
n	142	6,38E+02	9,33E+09	79	
S	143	1,43E+01	1,48E+08	25	

SPES devoted as ¹³²Sn factory?

Yield for possible n-poor beams

Graphite Target

Isotope	Half-life	Total Yield (FLUKA)
P-> 12C	t1/2	[nuclei/s]
⁷ Be	53 d	4,37E+12
⁸ B	770 ms	6,64E+11
¹¹ C	20 m	2,45E+13
¹² B	20 s	3,50E+08
¹² N	11 ms	5,72E+11
¹³ N	9,9 m	3,33E+10
¹⁵ O	122 s	6,99E+08

Silicon Carbide Target (test 2006)

Conclusion

Alberto Andrighetto

The RIB source is almost ready for operation..

- **★** TIS Unit ready; endurance tests running.
- ★- UCx LNL laboratory ready for operation.
- ★ Laser off-line lab fully operational; Al, Ge, Sn ionization scheme tested successfully.
- ★- New handling lab ready; AGV is moving in remote mode.
- ★ Rad-hard test for critical materials & components started.

uto Nazionale

Second conclusion: thanks to the team!

Alberto Andrighetto

