Status of the SPES project

Gianfranco Prete SPES project leader

Third International SPES Workshop

10-12 October 2016 INFN Laboratori Nazionali di Legnaro

SPES Strategy

Neutron-rich ions by p-induced Fission on UCx (10¹³ f/s)

Research and Production of Radio-Isotopes for Nuclear Medicine

Best Cyclotron Systems

LARAMED

Accelerator based neutron source (Proton and Neutron Facility for Applied Physics)

Design study

Direct target & H⁺ Cyclotron

INFN-LNL-223 (2008)

NEW concept developed for the Direct Target: **Multi-foil UCx** designed to sustain 10kW beam power to reach **10¹³ f/s**

The ISOL front-end design follows the ISOLDE system.

A proton beam of 40 MeV, 0.2mA will produce up to 10¹³ f/s in the UCx target (~ 30 g).

The cyclotron accelerates H+ and will produce 2 proton beams, feeding 2 targets at the same time.

Evaluated cost ~ 50 M€

SPES infrastructure - layout

SPES building

50x60 m² -3 to +11 m height 24.000 m³ of concrete 1.150 tons iron

3-4 m shielding wall thick

The SPES building 2016

SPES layout: ISOL facility installation phases

- Phase 1. 2016 Building + First operation with the cyclotron NOW!
- Phase 2. 2017-18 From C.B. to RFQ + SPES target, LRMS, 1+ Beam Lines
- Phase 3. 2019 20 HRMS-BeamCooler + RFQ to ALPI

Breaking News:

May $30^{\text{th}} 2016 \rightarrow \text{dual extraction 70 MeV beam} - 3 \,\mu\text{A}$ Sept $9^{\text{th}} 2016 \rightarrow \text{acceleration 70 MeV beam} - 500 \,\mu\text{A}$ End Oct 2016 \rightarrow expected to complete Site Acceptance Test

Cyclotron highlights

Main Parameters

Accelerator Type	Cyclotron AVF 4 sectors	
Particle	Protons (H ⁻ accelerated)	
Energy	Variable within 30-70 MeV	
Max Current Accelerated	750 μA (52 kW max beam power)	
Available Beams	2 beams at the same energy (upgrade to different energies)	
Max Magnetic Field	1.6 Tesla	
RF frequency	56 MHz, 4 th harmonic mode	
Ion Source	Multicusp H ⁻ I=15 mA, Axial Injection	
Dimensions	Φ=4.5 m, h=1.5 m	
Weight	150 tons	N

Beam test on 50kW INFN target

See A.Lombardi presentation

21st ICCA, Zurich, September 13, 2016

ISOL system and diagnostics

SPES_ISOL Front-End

System under operation for ion sources commissioning.

Updated version under construction (radiation hardness improved).

See A.Andrighetto presentation

Production Target

UCx target for neutron-rich ion production

Expected intensity for reaccelerated beams (10^{13} f/s)

T. Marchi

87 Fr

88 Ra

ISOL system: target material development

SiC (Saint Gobain)

	-																	
1 H	B ₄ C															2 He	7Be*	
3	4		S	SiC				CeS					5 6 7 8 9					10Be*
Li	Be	Al_2O_3							LaCx				B C N O F			F	Ne	21 Na*
11	12		Z	.rC					IaC			13	14	15	16	17	18	22 Na*
Na	Mg											AI	Si	Р	S	CI	Ar	22 Mg*
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	23 Mg*
K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	24 Al*
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	25 Al*
RD	Sr	Ŷ	<u> </u>	dи	MO	IC	RU	ĸn	ra	Ag	Ca	l In	Sn	30	le		хе	26 Al*
55	56 Ba		72	73 Ta	74	75 Po	76	77	78 Pt	79	80	81 1	82 Ph	83 Bi	84 Po	85	86 Pr	29 P*
CS	ва		r11	Ia	VV	ке			ΓΊ	AU	пg		CD		FO		KŬ	

Lanthanides

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Te	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Ion source sectivity

Evaluated beam selectivity with mass selection 1/200

M.Manzolaro, D.Scarpa

Target Ion Source status

SPES target in-beam power test (SiC target)

Heater power compensated by proton beam.

- Up to **4 kW proton** beam in target.
- Stable temperatures
- Stable vacuum (3 10⁻⁵ mbar)
- Validated FEM symulations (iThembaLABS, May 2014)

TIS unit endurance test:

Target system:

Tests at high temperature with <u>Joule heating</u> <u>thermal load</u>. **Heating power ≈ 12 kW** ≈ 415 testing hours at high temperature

Surface ionization source:

≈ <u>380 h (16 days)</u> of operation at 2000-2200°C

Plasma source: optimized to avoid hot-spot and new alignment system.

≈ 160 working hours @ 2000°C

Improved mass selection from 1/70 to more than 1/100 new design of electric and magnetic fields (A.Monetti PhD thesis)

Remote target handling

- Electro-Mechanical system based on AGV
- completed and under endurance test operation

R.Silingardi, A.Mozzi

See A.Andrighetto presentation

Phase 2: Low energy, low intensity beam monitors

Horizontal and vertical profiles of a ⁴⁰Ca beam (charge state 9⁺) at current of about 10 fA (10⁴ pps).

Instrumentation@SPES: Tape system

Tape station based on Orsay design

Beta decay station as a permanent and flexible setup

- Tape station + β detector
- Coupling to HPGe, LaBr3, neutron detectors etc...

Collaboration ALTO-INFN-iThembaLabs

Diagnostics for SPES: tape stations to characterize RIBs

First station for target characterization

Second station for beam characterization after HRMS

Beam characterization:

- Release Curve

- Beam Composition and Isotopic Yields

Phase 3: Beam transport and mass selection INFN

1+ beam transport and selection

Phase 3: High Resolution Mass Separation

Beam Cooler to match the HRMS input requirements

Collaboration with LPC_Caen for BC development (SPIRAL2)

transversal emittance

Input T emittance Output T emittance

M.Maggiore

Istituto Nazion di Fisica Nuclei

Beam transport and reacceleration

Phase 2: Exotic Beam reacceleration: Charge breeder and MRMS up to RFQ

Phase 2: Validation of the SPES-Charge Breeder

		EFFICIENCY* [%]								
ION	0	SPES	Best	SPES-						
IUN	Q	req	LPSC	CB						
Cs	26	≥ 5	8,6	11,7						
Xe	20	≥ 10	10,9	11,2						
Rb	19	≥ 5	6,5	7,8						
Ar	8	≥ 10	16,2	15,2						

Development at LPSC (Grenoble). Upgraded PHOENIX booster as Part of a MoU in the frame of the European Associated Laboratories (LEA-Colliga)

- 2015 Commissioning at LPSC
- 2015 Delivery to LNL
- 2016-17 Installation and test

M.Manzolaro

Assembly of 1+Source Front-End SPES production, similar to ISOL source

A.Galatà

*results obtained for the same 1+ injected current

Phase 3: the SPES-RFQ

Synergies with IFMIF project

Design completed Construction started (electrodes 1,3 M€) Additional study to finalize RF

Production sequence & Scheduling Appoved by TAC

- Schedule : Dec 2015 to Sept 2019
 - Electrodes call for tender : dec 2015
 - Electrode production : sept 2016
 - Completion of 24 electrodes : sept 2018
 - Tank call for tender : march 2016
 - Tanks Completion : dec 2018
 - Assembly and low power testing : june 2019
 - High power tests : sept 2019

High power RF Coupler 200kW 100% duty cycle

Physics design

Energy from SPES Post-Accelerator as function of A/q

(M. Comunian)

Preliminary results from alpi performances with 2 cavities as margin, Low Beta=5 MV/m, Medium Beta=4.3 MV/m, High Beta=5.5 MV/m

SPES safety system

A SIL3 safety system is under development (assigned to PILZ) A simplified system is in operation for cyclotron test

Cyclotron and beam lines

ISOL target

Access Control System

Porta Cancello

SPES installation timing

2017 2018					2019				2020				2021						
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
FASE 2A: INSTALLATION					FASE 2A: HW COMM	FASE 2A: BEAM COMM													
								FASE 3A: INSTALLATION					FASE 3 COI	BA: HW MM	FASE 3A: BEAM COMM				
FASE 2B: INSTALLATION						FASE 2B: HW COMM	FASE 2B: BEAM COMM												
										FASE 3B: INSTALLATION					FASE 3B: HW COMM	FASE 3B: BEAM COMM			

SPES personnel (46,2 FTE/78 persons)

- A **distribute laboratory** for radioactive beams:
- More exotic beams available
- Coordination of competences to face EURISOL technologic challenges
- Joint effort to manage the activity at European level

SPES LAYOUT: Applications areas

LARAMED: Research and production of new radioisotopes for medicine

SPES γ : Radioisotope Production & research

LARAMED Funded with 6.8 Meuro

Production of radionuclides for medicine using the SPES cyclotron (production&research)

Joint Research lab of INFN, CNR, Universities and external companies:

- Cross Section measurements through target activation
- High power targets tests
- Radio-isotope/radio-pharmaceutical Production test facility (^{99m}Tc, ⁶⁴Cu, ⁶⁷Cu, ⁸²Sr, ...)

Production laboratory in Joint Venture with external companies:

Selected isotopes of medical interest

Sr-82/Rb-82 generator T1/2: 25.6 d EC 100% / 1.3 min photons 511keV, 776keV

STATUS:

- Building and infrastructures under development
- Design of radiochemistry labs
- Design of beam line and target management

•

Contract with company for radioisotopes production to be finalized

ISOLPHARMA*

Use of ISOL technique for Direct isotope on-line separation : very high specific activity (10⁴⁻⁵ than standard)

After 2 days of irradiation: 4.1E+15 atoms of ⁸⁹Sr = 18 mCi (patient dose: 4 mCi every 6 months).

Collaboration with Pd_University (Pharmacy) for preliminary test

ARRONAX (Nantes) – SPES collaboration: Isotopes and high-Power target developments

A.Duatti

Design study

SPES γ : NEPIR: Neutron production at SPES

Integral neutron production at SPES Cyclotron Proton beam= 70 MeV, 500 μA Target = W 5mm

Energy region (MeV)	Sn (n/s) $\sim 6 \cdot 10^{14} \text{ s}^{-1}$	Φ _n @ 2.5 m (n cm ⁻² s ⁻¹)	Φ _n @ 1 cm (n cm ⁻² s ⁻¹)		
1 < E < 10	$\sim 5.10^{14} \text{ s}^{-1}$	5×10 ⁸	3×10 ¹³		
10 < E < 50	$\sim 1.10^{14} \text{ s}^{-1}$	1×10 ⁸	6x10 ¹²		

Continuum and Quasi Mono Energetic fast neutron spectra

- Cross section data for basic science and astrophisics
- Oncology studies
- o Calibration of radiation instrumentation
- Radiation protection studies (shielding-benchmarks)
- Radiation hardness studies (Single Event Effect)

SPES in summary

Items in construction

- Building and infrastructures*
- Cyclotron*
- ISOL system and sources
- Charge Breeder (starting 2014)
- Linac ALPI up-grade
- Beam transport
- Control system*
- Authorization to cyclotron operation (completed)

Items under final Design

- RFQ
 - MRMS (n+ separator)
- LARAMED
- Safety system*
- Authorization extension to UCx full power and applications
 applications

Items at Preliminary Design

- HRMS
- Beam cooler
- NEPIR neutron facility

* Items on critical path in 2014

SPES in summary

Items in construction

- Building and infrastructures
- Cyclotron
- ISOL system and sources (90%)
- Charge Breeder
- Linac ALPI up-grade
- Beam transport
- Control system*
- RFQ
- MRMS (n+ separator)
- LARAMED
- Authorization to cyclotron operation

Items under final Design

• RFQ

- MRMS (n+ separator)
- LARAMED
- HRMS (starting soon)
- Safety system
 - Authorization extension to UCx full power and applications * SPES workshop 2016 Third

Items at Preliminary Design

• HRMS

- Beam cooler
- NEPIR neutron facility

* Items on critical path in 2016

(in RED= completed)

Thank you for your attention

