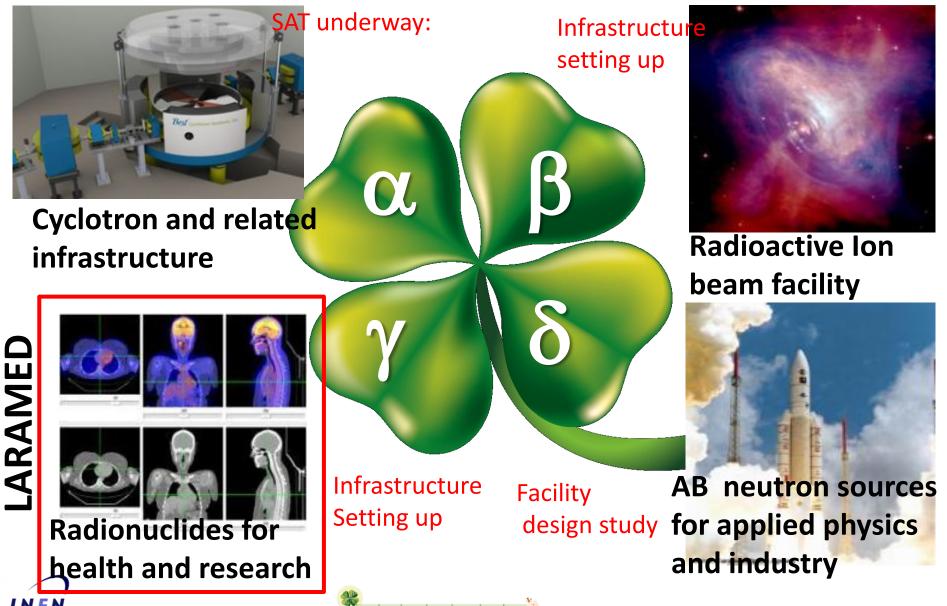


Status and perspectives

J. Esposito, on behalf of LARAMED collaboration III International SPES workshop LNL, October 11th, 2016 juan.esposito@Inl.infn.it


Contents

- Why LARAMED project: a brief recall
- LARAMED facility infrastructure set-up
- LARAMED radionuclides of interest research ongoing program
- Emergency radionuclides of interest for theranostic applications
- ⁶⁴Cu/⁶⁷Cu production with high-performance cyclotron

The four stages of SPES project

Why LARAMED

- Share our facility with different scientific and trade communities is a must nowadays (e.g. TRIUMF, JAEA, LANSCE etc. already do it
- Social recognition of the nuclear physics role for human health is an important bonus for INFN as a research institution
- External funds from radioisotopes research activities are a must for the future running of SPES/LARAMED facility
- Interesting nuclear science & technology research center dedicated both to nuclear medicine and applied physics R&D activities (e.g. INFN research projects)

The big Challenge: is INFN ready for partnership with private enterprises?

How LARAMED Project is planned

LAboratory of RAdionuclides for MEDicine, granted as "competitive project" at national level includes:

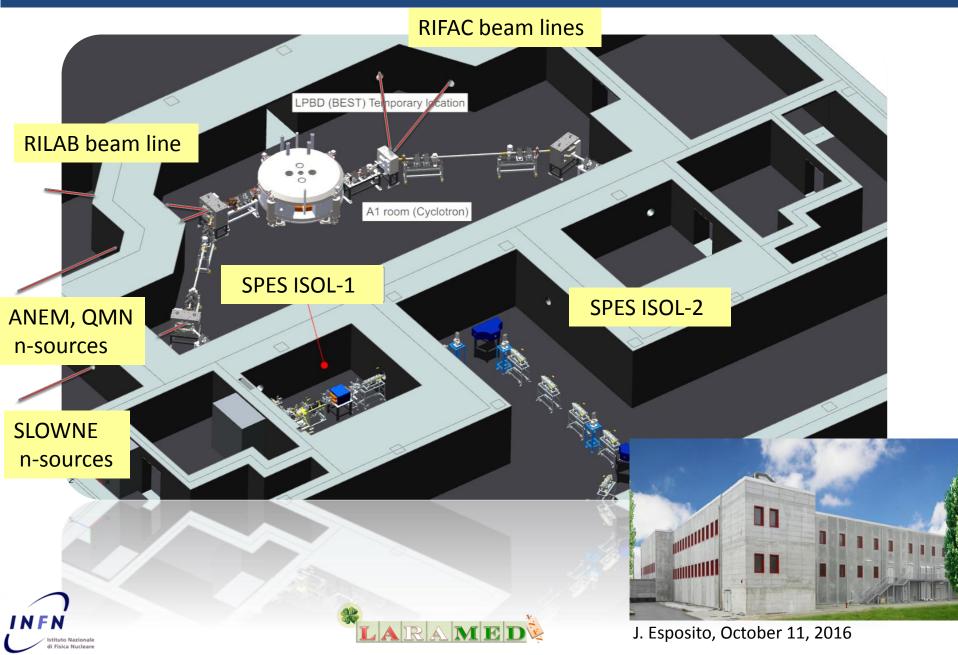
– A research laboratory (RILAB), owned jointly by INFN and CNR for:

- Nuclear cross section measurements (i.e. standard stack-foils activation technique)
- A proving ground for high power target tests
- Low-activity-production of experimental radioisotopes/radiopharmeceutical (^{99m}Tc, ⁶⁴Cu, ⁶⁷Cu, ⁸⁹Zr, ⁴⁷Sc...)

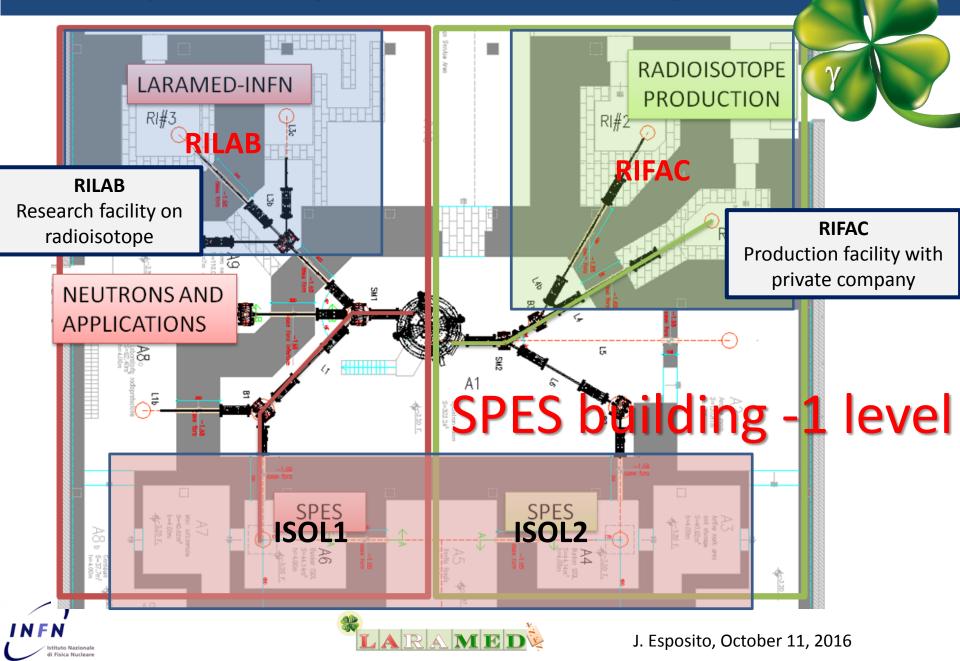
A production facility (RIFAC), operated by INFN and a private partner, to supply market demands for parent nuclides ⁸²Sr/⁸²Rb and ⁶⁸Ga/⁶⁸Ge generator systems

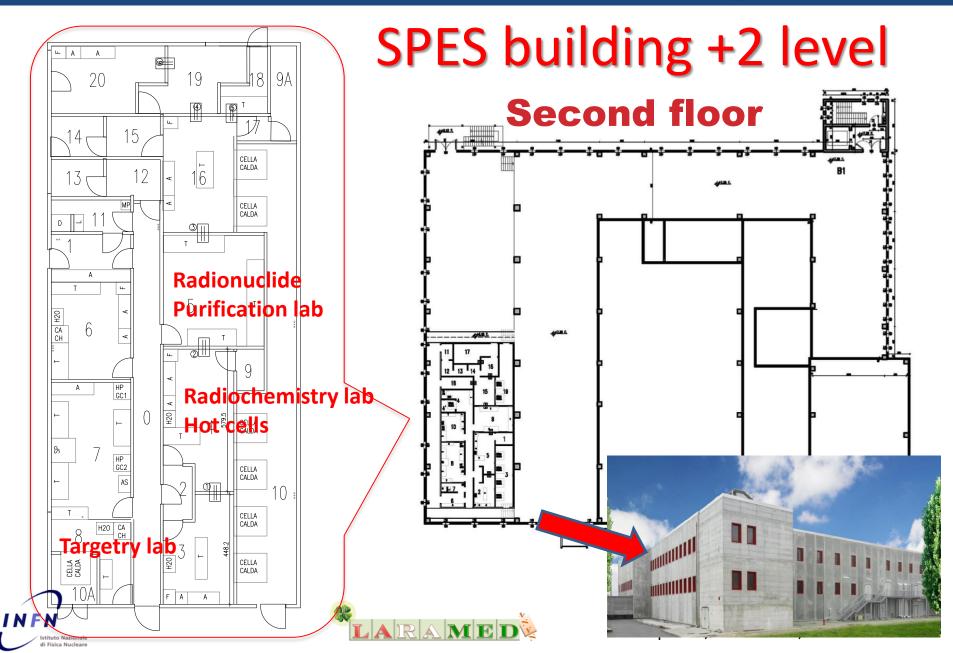
The new 70 MeV, 750µA proton driver

Best Cyclotron System


500 µA achieved on Sept. 2, 2016

The brand new B70 cyclotron: Installed in May 2015, now under commissioning Dual simultaneously beam extraction cyclotron ($E_P = 35-70$ MeV):


- 1° nuclear physics research on RIBs (SPES project) : E=40 MeV , I=200 μA (and future upgrades)
- 2° applied physics (LARAMED project, neutron source) : E=35-70 MeV, I=300 μ A (upgrade 500 μ A)


The SPES building (-1 floor): 3D layout

Final layout and cyclotron beams sharing foreseep

RILAB future laboratories layout

LARAMED External Collaboration Network

Waiting for a dedicated beam-line and available laboratories, we are collaborating with:

ARRONAX facility (Nantes, France)

70 MeV multi-particle cyclotron

St. Orsola Hospital (Bologna, Italy)

16 MeV cyclotron routinely used for 18FDG

University of Ferrara (Italy). YAP-(S)PET-CT small-animal imaging system

National Research Council (CNR) in Milan (Italy). Facility for cellular and pre-clinical studies

At LNL we already use γ-spectroscopy laboratory fully equipped with HPGe detectors and technologies for metal vapour deposition, brazing, surface treatment (Material Science lab.).

J. Esposito, October 11, 2016

Svizzer

Francia

Spagna

Repubblic

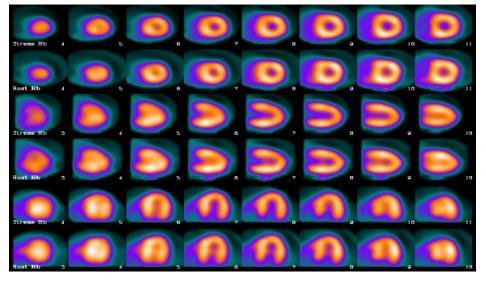
Bosnia e

Running R&D activities within LARAMED framework

	INFN already funded/running projects	Project name
	Tc-99m/Mo-99 direct production routes using accelerators	APOTEMA (2012-2014) TECHN-OSP (2015-2017)
	Participation to IAEA ' Coordinated Research Project ' (CRP) on" <i>Alternative, non HEU-based, Tc-99m/Mo99 supply</i> " (PI: J. Esposito)	CRP (F22062) (2011-2015)
	Cu-67/Sc47 new (i.e. more efficient) production routes	COME (2016) PASTA (proposal)
	Participation to IAEA ' Coordinated Research Project ' (CRP) on <i>"Radiopharmaceuticals Labelled with New Emerging Radionuclides Cu-67, Re-186, Sc-47"</i>	CRP (F22053) (2016-2019)
-	Sr-89 production with ISOL technique	SPES/ISOLPHARM
1	RILAB laboratory infrastructure set up	LARAMED comp. project (2013-2016)
	High Power Target concepts R&D (^{64/67} Cu)	TERABIO comp. project (2016-2019)
	di Fisica Nucleare	3. Esposito, October 11, 2010

LARAMED first radionuclides list of interest

Radioisotope	Half-life		
Sc47	3.35 d		
Cu-64	12.7 h		
Cu-67	2.58 d		
Sr-82	25.4 d		
Ge-68	270.8 d		
Tc99m	6.01 h		
Sr-89	50.5 d		


Starting radionuclides of interest for nuclear medicine. They can be produced by means of the SPES cyclotron. Additional ones are under examination

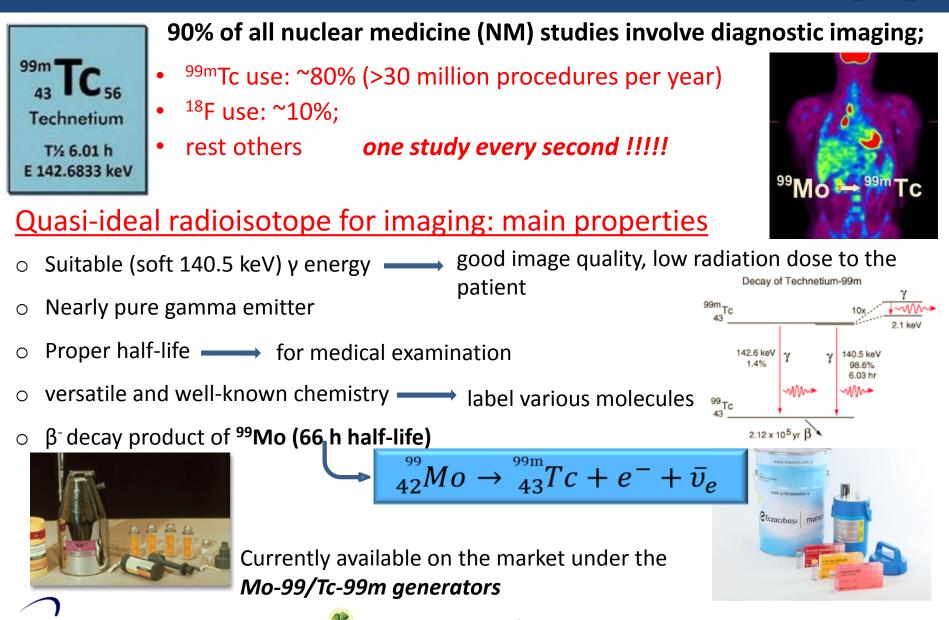
⁸²Sr/⁸²Rb: heart function tracer

 This radioisotope is actually produced <u>in a limited amount in few</u> <u>accelerator facilities worldwide</u>

Isotope	Sr-82	Rb-82
τ 1/2	25d 🗖	1.27 m
EC	100% in Rb82	-
β+	-	100%
β-	-	-

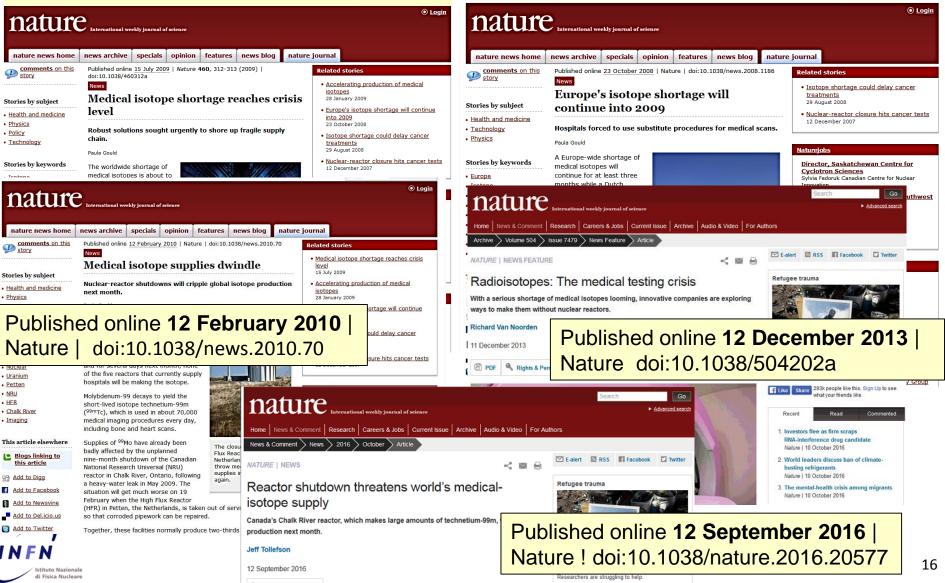
- The ion Rb⁺ is a biologic analog of K⁺, fundamental in the heart cell operation.
 - Once administered by intravenous injection, ${}^{82}Rb^+ \gamma$ emitter radioisotope, can be used as tracer to study the real-time heart functions

⁶⁸Ge/⁶⁸Ga: many pathologies tracer


- Together with F-18 e C-11, recently, the request of the β⁺ emitter radionuclide ⁶⁸Ga has grown exponentially
- Ga-68 proved to be stably labelled to small peptidic biomolecules, used in the diagnosys of many pathologies of peptide receptor tissues
- The production, by means of medium-high energy cyclotrons, will provide an effective solution to the problem of availability of the generator nuclide ⁶⁸Ge, whose production, with the methods used mowadays, is not enough

lsotope	Ge-68 🗕	🔶 Ga-68
τ _{1/2}	271d	68m
EC	-	-
β+	-	100%
β-	100% in Ga-68	-

J. Esposito, October 11, 2016


Tc-99m: the workhorse of modern medical imaging

Tc99m supply World crisis: seeking for alternative routes

Published online **15 July 2009 | Nature 460, 312-313 (2009) |** doi:10.1038/460312a

Published online **23 October 2008** | Nature | doi:10.1038/news.2008.1186

APOTEMA/TECHNOSP exp.: INFN contribution (2012-2017)

<u>Main project goal</u>

J. Esposito, Sci Tech of Nuc Inst, vol. 2013, Article ID 972381, 14 pages, 2013. doi:10.1155/2013/972381

Assessment of accelerator-driven alternative production of ^{99m}Tc exploting the SPES proton cyclotron at LNL

Alternative Tc-99m production route

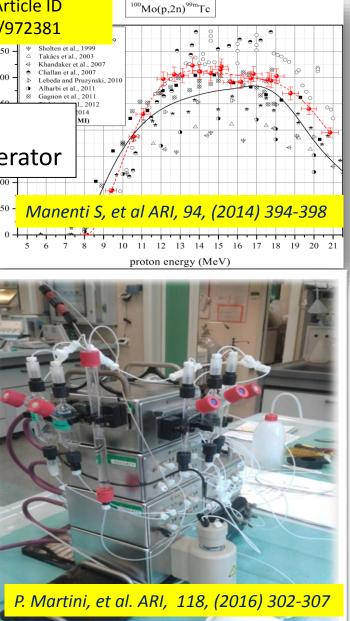
¹⁰⁰Mo(p,2n)^{99m}Tc (direct route) ¹⁰⁰Mo(p,x)⁹⁹Mo \rightarrow ⁹⁹Mo/^{99m}Tc generator

Current supply route

Tc-99m

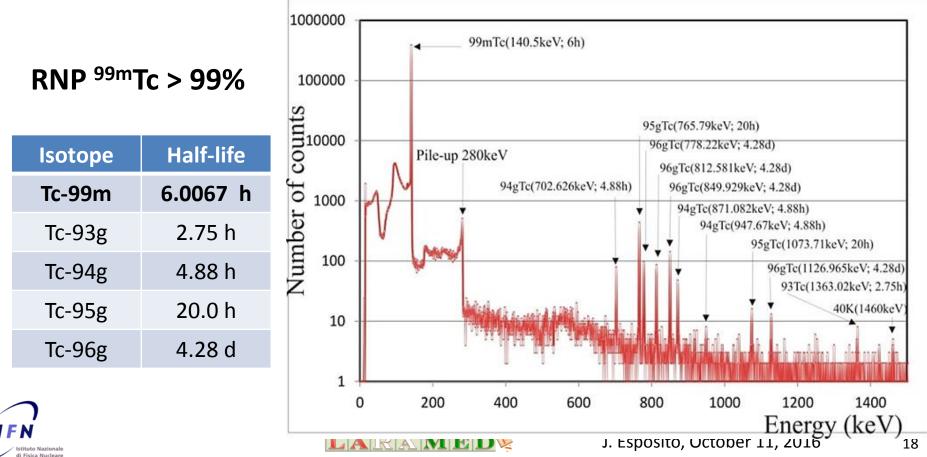
⁹⁹**Mo parent production** in a few nuclear reactor sites in the world, as fission fragment product in high-enriched U235 «weapon grade» fissile material

Mo-100

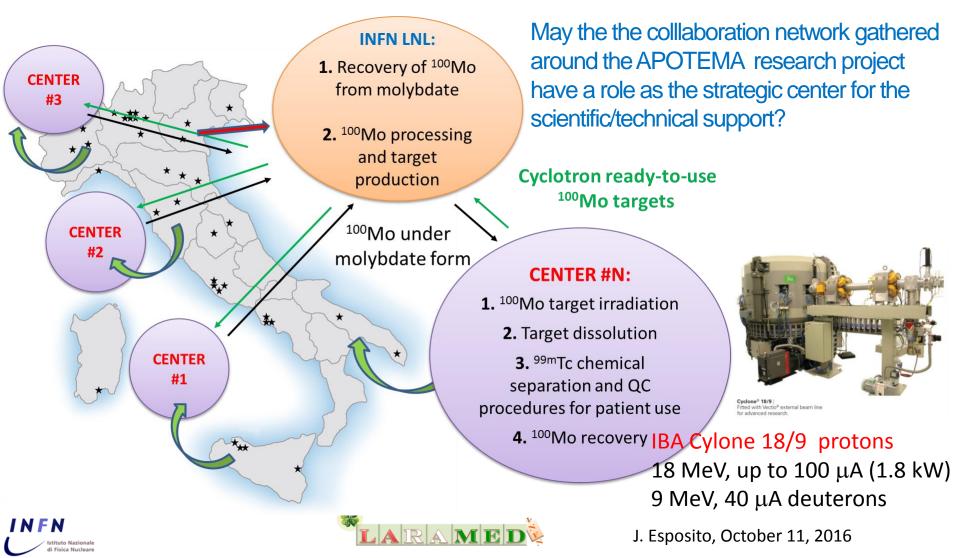

Optimal production (direct route):

1. Ep ~ 18-20 MeV max

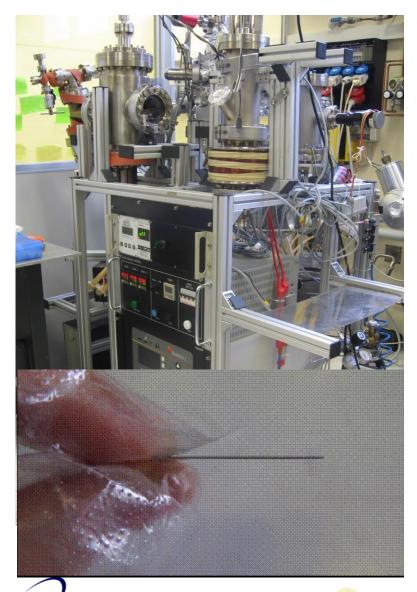
di Eisica Nuclear

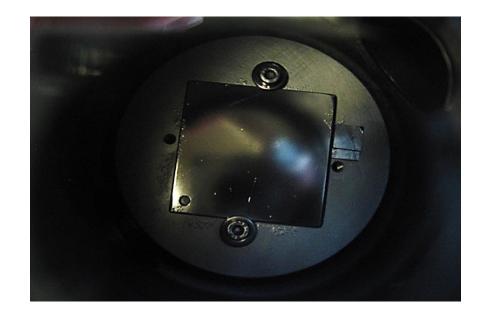

- 2. ¹⁰⁰Mo(>99%) enriched moly targets
- 3. Irr. Times not longer than $T_{1/2}$ (better within $\frac{1}{2} T_{1/2}$)

By using high-performance cutting edge technology cyclotrons (i.e. 300-500 µA current intensity (eg. SPES to LNL) and energies of up to 20 MeV) the **daily needs of the entire Veneto region** (273 GBq/day = ~ 7 Ci/day) may be supplied if necessary


^{99m}Tc radionuclidic purity

- Radionuclidic purity of the ^{99m}Tc-eluate was performed with γ-spectrometry (HPGe detector)
- Total activity of ^{9x}Tc-isotopes < 1%
- ^{99m}Tc activity at the time of SPECT imaging (about 7 hours after EOB)




TECHN_OSP project (2015-2017): A hub and spoke approach

R&D activities aimed at an industrially-based technology for future homeland accelerator-^{99m}Tc production based on a selected cyclotrons' network in Italy:

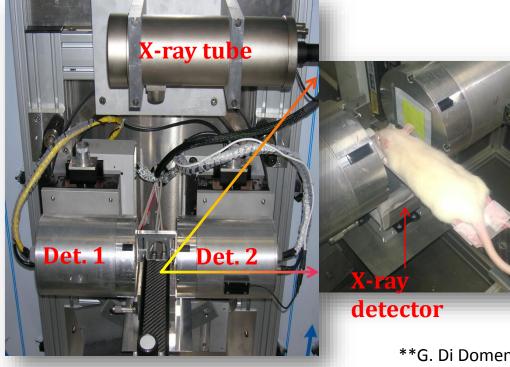
~1kW/cm² new target concepts: successful tests at LNL STS lab of molybdenum layer deposition on backing material

First successful test to deposit multiple layers (0.5 μ m each) up to ~300 μ m on a copper backing using the Physical Vapor Deposition (PVD) technique under UHV.

No stress at micro-structure level has been observed.

The system has been fully automated

Further tests are underway to fully optimize the production process able to produce good quality layers


Irradiation tests at S. Orsola Hospital

110 μm Mo-nat directly sputtered onto Cu backing (first time ever) 70μA, 15.6 MeV -> ~1.1 kW/cm² achieved!! Contact between sputtered Mo film, and Cu-backing remains excellent Double 3hrs irr/day -> ~1.5 Ci daily needs S. Orsola Hospital

Accelerator-^{99m}Tc: imaging studies

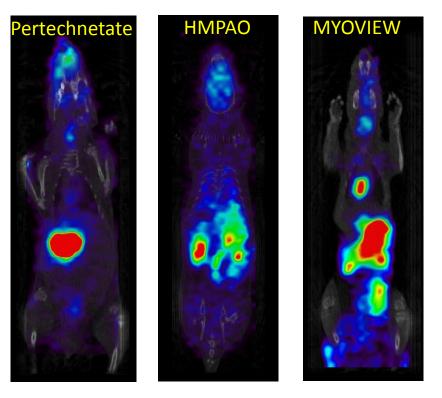
- Anesthetized WIST rats were injected into the jugular vein
- Whole-body SPECT-CT biodistribution studies were carried out with the hybrid YAP(S)PET-CT small-animal scanner at Ferrara Univ.
- Depending on rats' dimensions, n. 4-5 scans have been taken

SPECT modality *

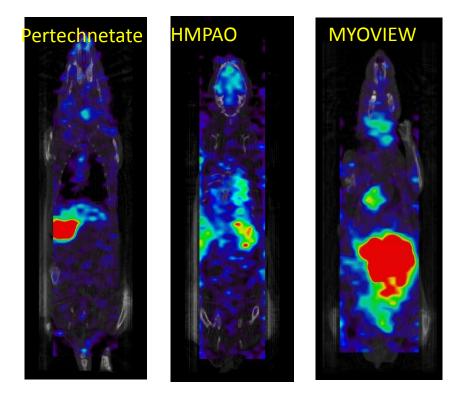
Field of view: 4 x 4 x cm² Yap(Ce): 4 x 4 x 3 cm³ Energy Res.: 26% (140 keV) Spatial Res.: 3.5 mm Sensitivity: 15 cps/MBq

CT **

Active area: 49.2 x 49.3 mm² GOS on dual CMOS array (1024x1024 photodiodes)

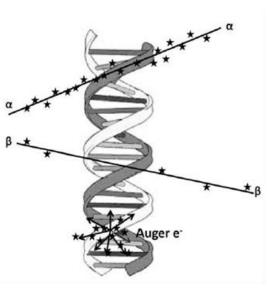

*A. Del Guerra et al., *IEEE Trans.Nucl.Science* (2004) **G. Di Domenico et al., *Nucl Instrum Meth A* (2007) 571 :110–113

APOTEMA: First *in-vivo* **SPECT-CT** images


Generator-produced ^{99m}**Tc**

correction for injection time and activity

Accelerator-produced ^{99m}Tc


correction for inj. Time, activity and scatter

→ Preliminary SPECT-CT imaging study confirmed comparable biodistribution of radiopharmaceuticals labelled with 99m Tc (generator- or cyclotron-produced) → The effect of scattered high-energy γ -rays strongly depends on the imaging system

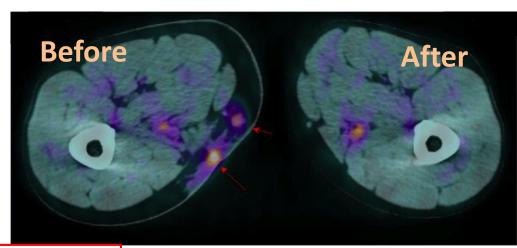
⁶⁷Cu and ⁶⁴Cu: new emerging radionuclides

			THERAPY			
Cu-67	γ-ray	γ-ray	β energy	β int	Auger	Auger
61.83 h	[keV]	[%]	[keV]	[%]	[keV]	[%]
β- : 100 %	184.6	48.7	51	1.1	0.99	19.14
(Zn-67)	209.0	0.115	121	57	7.53	6.87
	300.2	0.797	154	22.0	83.65	12.09
	393.5	0.220	189	20.0	Mean β- :	141 keV
					THERAPY	
Cu-64	γ-ray	γ-ray	β+ energy	β+ int	Auger	Auger
12.701 h	[keV]	[%]	[keV]	[%]	[keV]	[%]
ε : 61.5 %	1345.77	0.475	278.21	17.60	0.84	57.7
(Ni-64)	THERAPY				6.54	22.51
β- : 38.5 %	β energy [keV]	β int [%]	NuDat 2.6	database (2	.013) - NND	С
(Zn-64)	190.70	38.5				

Schematic illustration of ionization densities, from A. Dash et al., *Current Radiopharmaceuticals* (2013)

Cu-67 very attractive because of physical-chemical properties ($T_{1/2}$ 2.58 d). Suitable for **Theranostic (Therapy + Diagnostic) applications,** as single isotope, or in pair with ⁶⁴Cu (β -emitter, half-life 12.7 h).

Potential of **theranostic** is the <u>selection of patients prior therapy</u> and the use of maximum tolerated dose (MTD)*, based on previous SPECT/CT (⁶⁷Cu) or PET/CT (⁶⁴Cu) diag. proc.


* Srivastava SC, . J Postgrad Med Edu Res 47 (2013) 1:31-46

Applications of ⁶⁷Cu and ⁶⁴Cu in nuclear medicine

Human Copper transporter 1 (hCtr1) plays a major role in the cellular uptake of copper in humans and it is overexpressed in a variety of cancers

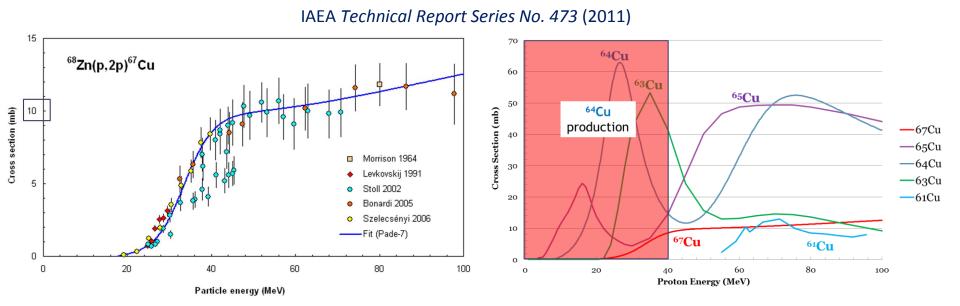
- ⁶⁴Cu is ALREADY used in nuclear medicine for PET (diagnostic proc.)
- ⁶⁴Cu seems to provide excellent results also in THERAPY (under simple ⁶⁴CuCl₂)

Malignant melanoma images (left leg) before and after **100 mCi** ⁶⁴CuCl₂ injection

What will it happen by using ⁶⁷Cu?

- ⁶⁷Cu is a promising nuclide in RAdio Immuno Therapy (RAIT)
- o ⁶⁷Cu's limiting factor: LOW availability

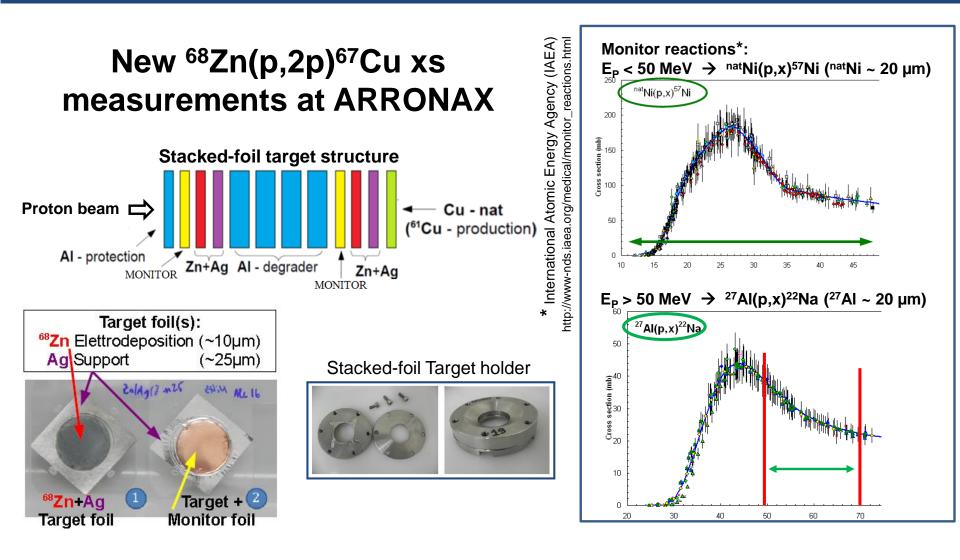
Worldwide Production per month : only 1 patient dose (100 mCi ≈ 3.7 GBq)


 \rightarrow ⁶⁷Cu production: Goal for both LARAMED and ARRONAX !

*Peng F et al., J Nucl Med (2006)47:1649-1652 ; **H Cai et al. , J Nucl Med (2014) 55:622-628.

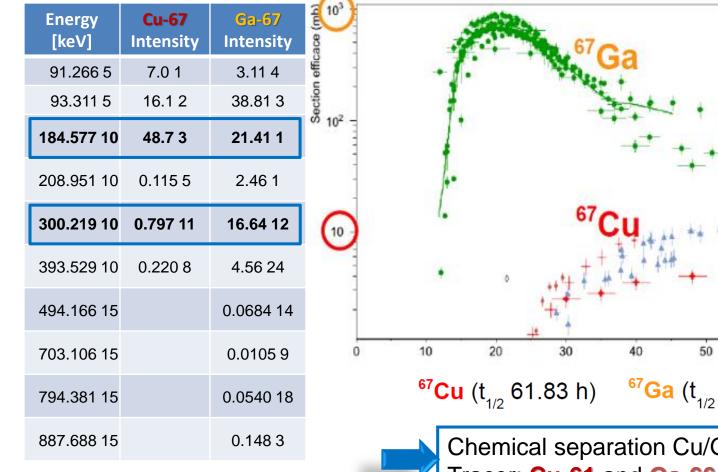
⁶⁷Cu current production route

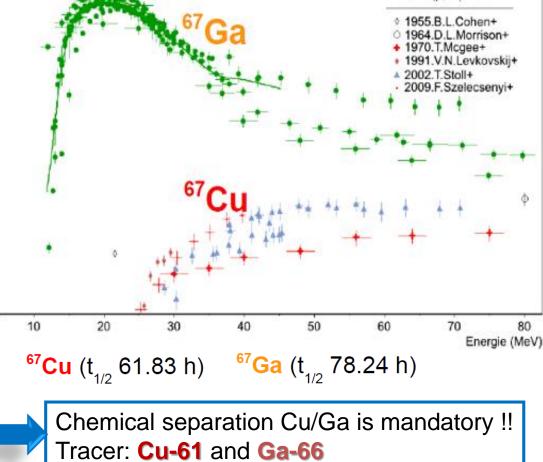
⁶⁸Zn(p,2p) reaction, already used but...not efficient


⁶⁷Cu monthly production: **100 mCi (@ BNL)**→Only ONE
therapeutic dose !

In order to have a pure ⁶⁷Cu (RNP>99%) it is necessary to wait that ⁶⁴Cu decays \rightarrow lose \approx 80% of ⁶⁷Cu activity

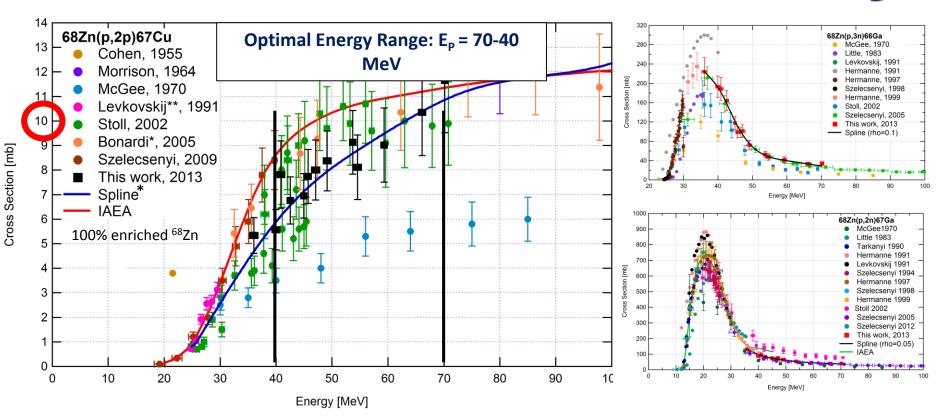
Assessment of current ⁶⁸Zn(p,2p)⁶⁷Cu xs data


Target foils prepared at the LNL targetry lab


di Eisica Nucleare

⁶⁷Ga interfering radionuclide

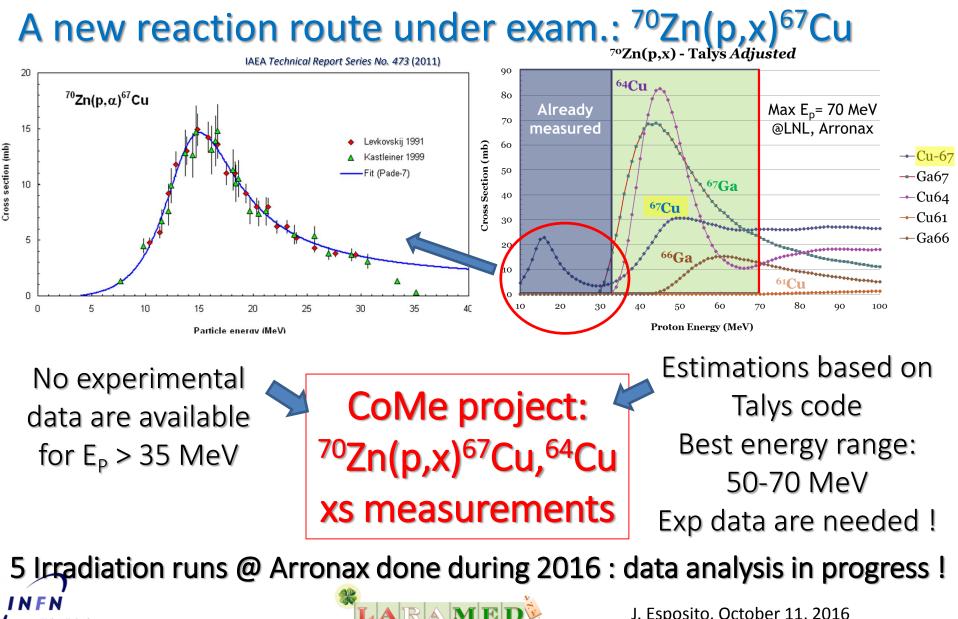
⁶⁸Zn(p,x)reactions^{*}: co-production of ⁶⁷Cu and ⁶⁷Ga



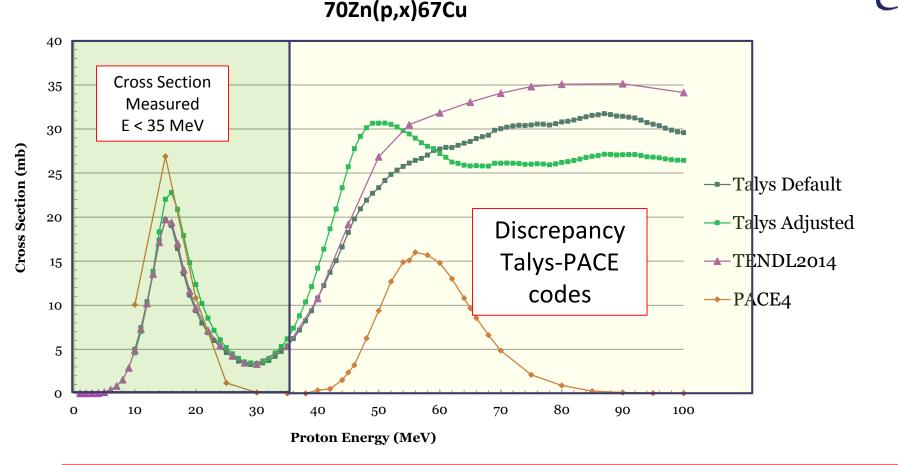
68Zn(p.2n)67Ga

Xs measurements at 35-70 MeV

The ⁶⁸Zn(p,2p)⁶⁷Cu cross section at ARRONAX



Results next to be issued



COME (COpper MEasurement) exp.: INFN funded (2016)

⁷⁰Zn(p,x)⁶⁷Cu nuclear models diagreement

The ⁷⁰Zn(p,x)⁶⁷Cu cross section ESTIMATION

We need the support of nuclear physics community to explain this disagreement !

The LARAMED collaboration group

ARRONAX

L. Mou INFN-LNL)

(STS lab LNL)

Haddad

(Director)

INFN

G. Pupillo

INFN-LNL

INFN

V. Palmieri (STS lab LNL)

Azienda Ospedaliero - Universitaria di Bologna

ALMA MATER STUDIORUM

P. Martini

UNIVERSITÀ DEGLI STUDI DI FERRARA

Consiglio Nazionale Ricerche

G. Pupillo

INFN-LNL

M. Pasquali

L. Uccelli

(INFN-LNL)

THANK

J. Esposito, October 11, 2016

A. Boschi