UNDERSTANDING NEUTRON STARS
THROUGH GRAVITATIONAL-WAVE
OBSERVATIONS
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Gravitational Wave Detectors




strain noise amplitude (Hz'1/2)

Advanced LIGO & Advanced VIRGO

Advanced LIGO

|l Early (2015, 40 — 80 Mpc)
. Mid (2016-17, 80 — 120 Mpc)
I Late (2017-18, 120 — 170 Mpc)
Il Design (2019, 200 Mpc)
" BNS—-optimized (215 Mpc)

10° 10
frequency (Hz)

strain noise amplitude (Hz_1/2)

—
o

—
o

Advanced Virgo

—21
- BN Early (2016-17, 20 — 60 Mpc)
SR Mid (2017-18, 60 — 85 Mpc)
| Late (2018-20, 65 — 115 Mpc)
| M Design (2021, 130 Mpc) ¢
22|\ | I BNS—-optimized (145 Mpc)
—23 ........................................
-24 L 1
10' 10° 10°

frequency (Hz)



A Network of detectors

2.2 Estimated observing schedule

Keeping in mind the mentioned important caveats about commissioning affecting the scheduling
and length of science runs, the following is a plausible scenario for the operation of the LIGO-Virgo
network over the next decade:

e 2015: A 3 month run with the two-detector H1L1 network at early aLIGO sensitivity (40 —
80 Mpc BNS range). Virgo in commissioning at ~ 20 Mpc with a chance to join the run.

e 2016-17: A 6 month run with HIL1 at 80 — 120 Mpc and Virgo at 20 — 60 Mpc.
e 2017-18: A 9 month run with HIL1 at 120 — 170 Mpc and Virgo at 60 — 85 Mpc.

e 20194: Three-detector network with HI1L1 at full sensitivity of 200 Mpc and V1 at 65 —
130 Mpc.

e 2022+: Four-detector HIL1V1+LIGO-India network at full sensitivity (aLIGO at 200 Mpc,
AdV at 130 Mpc).



Sky localization of sources




2 POSSIBLE PhD PROJECTS

A. SUPERCOMPUTING SIMULATIONS OF BINARY NEUTRON STAR
MERGERS
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ConsoRrTium MEMBERS

We are building a consortium of users and developers for the Einstein Toolkit. Users of the Einstein Toolkit are encouraged to
register on this page.

CURRENT USERS INCLUDE:

o Albert Einstein Institute Peter Diener

v

Stockholm University

o]
o Roland Haas o Hari Krishnan o Jan Aman
o lan Hinder o Frank Loffler
o Jian Tao > fanjaa faeafdarera (Tribhuvan
o Aristotle University of Thessaloniki University)
o Nick Stergioulas > McNeese State University o Udayaraj Khanal
. . . o Megan Miller o Tulasi Prasad Subedi
o Aveiro University
o Juan Carlos Degollado > NASA Goddard Space Flight Center , yniversitat de les llles Balears
o Carlos Herdeiro o John Baker o Sascha Husa
o Bernard Kelly
o Belmont University o Jennifer Seiler > Universidad Michoacana
o Scott Hawley o Francisco Guzman
> National Center for Supercomputing
o California Institute of Technology Applications > Universidad Nacional Auténoma de
o Christian D. Ott o Gabrielle Allen México
o Peter Kalmus o Edward Seidel o Jose Manuel Torres
o Philipp Mésta
o David Radice > Nicolaus Copernicus Astronomical > Universitit Bremen
o Christian Reisswig Center (NCAC) o Oleg Korobkin
o Béla Szilagyi o Antonios Manousakis

o Bhupendra Prakash Mishra > University of California



3D Simulation Code current requirements

Current capacity:

Az (CU) 0.75 0.50 0.375 0.25 0.185 0.125
# threads 16 64 128 256 512 2048
# MPI 2 8 16 32 64 256
Memory (GBytes) 3.8 19 40 108 237 768
speed (CU/h) 252 160 124 53 36 16
speed (ms/h) 1.24 0.78 0.61 0.26 0.18 0.08
cost (SU/ms) 13 81 209 974 2915 26053

total cost (kSU, 50 ms) 0.65 4 10.5 49 146 1300

TABLE VI. Computational cost of the simulations, for the ex-
ample of using BSSN-NOK, with WENO reconstruction for
the hydrodynamics. SU stands for service unit: one hour on
one CPU core. The reported values refers to the “GALILEO”
PRACE-Tierl machine locate at CINECA (Bologna, Italy)
equipped with 521 nodes, two-8 cores Haswell 2.40 GHz, with
128 GBytes/node memory and 4xQDR Infiniband intercon-
nect. Also, these are only correct for evolutions that do not
end with the formation of a BH, as an additional refinement
level was used to resolve the BH surroundings, and more anal-
ysis quantities had to be computed (e.g., the apparent horizon
had to be found). In addition, the simulations resulting in a

BH were performed on facilities at Louisiana State University:
SuperMike II (LSU HPC) and QB2 (Loni).



3D Simulation Code requirements

At current resolution: ~30M cu total for 20 runs

To achieve twice the resolution: 16 x higher,i.e. ~ 20M cu/run

ICHEC PRACE

ah Cartre for High-End

Tier-0 SITES

Y L Computing resources that are
’ [ ,\\J’\AL 25-75 times more powerful
L/’“'_'\/\—\(’_/ ~, than the facilities in Ireland

L .vaf éﬁer-‘l SITES

-q-n’>c centres with
mﬁputjng power up to 8
T times thatof 1GHEC




Analytic Templates with Physical Parameters
Bauswein, NS, Janka (2015)

We initially define 12 physical parameters, whith which we can
recover the waveform to high accuracy:
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Discover and use correlations between physical parameters to
reduce parameter space!



Data analysis requirements for BNS mergers

Xeon Sandybridge® Cores needed to run
Pipeline Development & review status search pipeline on detector network
data in time taken to acquire data
low-latency Analysis run on LIGO-Caltech 2015-16 2016-17 2017-18
GSTLAL-CBC | Pipeline mature and exercised Spinning: Spinning: Spinning:
Review already started 500 1,800 4,700
low-latency Pipeline tuning for adv Detectors Cascina cluster
MBTA update review start end 2014 (Virgo resources)
Daily Analysis run at LHO and LLO 2015-16 2016-17 2017-18
DetChar Daily analysis of sub-set of parameter
Pipeline space for detector characterization 1100 1200 2800
Analysis run on Offline XSEDE 2015-16 2016-17 2017-18
(Benchmarked on TACC/Stampede) Non-spinning: Non-spinning: Non-spinning
Offline Search pycbc/ahope upgrade near completion 500 1,400 2,600
Review readiness April 2014 Spinning: Spinning: Spinning:
single-stage ihope as fall-back 4,800 14,300 30,000
Parameter LALInference: medium-high latency mature | 20 cores for medium latency
Estimation Review underway (Dec 2013) 400 cores for high latency
BAYESTAR: rapid localisation 32+ core parallel node for low latency
Testing GR TIGER pipeline in place 1000 cores
Testing in real data (Virgo resources)

Table 1: Summary of resource requirements to deliver BNS science goals, broken down by search pipeline.
The baseline plan is to conduct a spinning BNS search, however the cost for an alternative non-spinning
BNS search 1s also given.
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Neutron Stars

First neutron star detected almost 50 years ago. Still, the fundamental
properties of matter in the core of neutron stars remain largely
uncertain.

No accurate radius determination!
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Image credit: MAGIC collaboration




Sample of Neutron Star Equations of State
Bauswein, Janka, Hebeler & Schwenk (2012)
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Outcome of Binary NS Mergers

Most likely range of total mass for binary system:

24Mo < Mot < 3Mo

Because nonrotating M.,... > 2M (as required by observations),
a long-lived (t >10ms) remnant is likely to be formed.

The remnant is a hypermassive neutron star (HMNS), supported
by differential rotation, with a mass larger than the maximum
mass allowed for uniform rotation.



Simulations of BNS mergers

t=12.46 ms
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Post-Merger Gravitational Waves

The GW signal can be divided into three distinct phases:
inspiral, merger and post-merger ringdown. (@40Mpc)
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Coherent Wave Burst Analysis

Target (noise free)
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Principal Component Analysis
Clark, Bauswein, NS, Shoemaker (2015)

Post-merger spectra cover different frequency regimes for various
EOS, but when scaled to peak frequency, a common pattern emerges.
One can then define a set of principal components and an average
spectrum.
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Principal Component Analysis
Clark, Bauswein, NS, Shoemaker (2015)

The signal and the spectrum can be reconstructed with high accuracy,
using the basis of principal components.
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