

ISAPP Summer Institute: Using particle physics to understand and image the Earth

Neutrino tomography:

Véronique Van Elewyck (APC & Université Paris Diderot)

... a review biased towards
 Neutrino oscillation tomography
 Atmospheric neutrinos
 Water Cherenkov detectors

Matter effects and neutrino mass hierarchy

<u>Strategy</u>: probe $v_{\mu} \leftrightarrow v_{e}$ governed by Δm_{13}^{2} + need matter effects to resolve the sign of Δm_{13}^{2} maximal enhancement at resonant energy

- $E_{\nu}^{\text{res}} = \pm \frac{\Delta m_{13}^2 \cos(2\theta_{13})}{2\sqrt{2}G_F N_e} \approx \text{few GeV for Earth densities}$ good prospects for atmospheric neutrino experiments !
- a « free beam » of known composition (ν_e, ν_μ)
- wide range of baselines (50 \rightarrow 12800 km) and energies (GeV \rightarrow PeV)
- maximum difference IH \leftrightarrow NH at θ =130° (7645 km) and E_v = 7 GeV
- opposite effect on anti-neutrinos:
 IH(v)≈NH(v)

BUT differences in flux, cross-section: $\begin{array}{l} \Phi_{atm}(\nu)\approx 1.3 \; x \; \Phi_{atm}(\nu) \\ \sigma(\nu)\approx 2\sigma(\nu) \; at \; low \; energies \end{array}$

Atmospheric neutrinos

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
$$\downarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

also: π⁻ μ⁻ e⁻ decay chain decays of kaons K⁺, K⁻

flavour ratio v_{μ} : $v_{e} = 2$: 1

for wide range of energies: $E_v = 1-20 \text{ GeV}!$ geomagnetic effects for $E_v < 2 \text{ GeV}!$

neutrino energies: $E_v = 0.5 - 500 \text{ GeV}$ neutrino pathlength: $L_v = 12 - 12.000 \text{ km}$ large L/E variation, explore small Δm^2 -values search for v_{μ} - v_e and v_{μ} - v_{τ} oscillations

Atmospheric neutrinos

Event rate inside a kton detector ? ("contained events")

- 1. Flux: $\Phi_v \sim 1 \text{ cm}^{-2} \text{ s}^{-1}$ (integrated over $4\pi \text{ sr}$)
- 2. Cross section: $\sigma_v \sim 0.5 \ 10^{-38} \ cm^2$
- 3. Targets M= 6 10³² (nucleons/kton)
- 4. Time t= 3.1 10⁷ s/y

 $N_{int} = \Phi_v (cm^{-2} s^{-1}) \times \sigma_v (cm^2) \times M (nuc kton^{-1}) \times t (s)$ ~ 100 interactions/ (kton y)

(to be folded with detector efficiencies, duty cycle,...)

Water-Cherenkov detector:

~3800 atmospheric neutrinos/year Position & angular reconstruction v_{μ} / v_{e} separation:

elmagn shower

Ve

...Today's results (1996 \rightarrow 2016):

... too small statistics to perform tomography:

Need bigger detectors...

The next generation: HyperKamiokande

Hyper-Kamiokande: The Detector

Earth tomography with HyperKamiokande: core

Resolution	Hyper-K			
σ _{mom} e/μ	5.6% /3.6%			
$\sigma_{_{dir}} e$ / μ	3.0° / 1.8°			
Atmospheric	ν CC Purity			
FC e-like	94.2 %			
FC µ-like	95.7 %			
PC µ-li ke	98.7 %			
MIS PID	<1%, 1 GeV			

Good reconstruction/ particle identification performances

Preliminary study on outer core composition: Normal hierarchy assumed Most sensitivity from v_e channel Exclude extreme composition models after ~15 years ?

... need even bigger detectors ?

A different technique: neutrino telescopes

Detection principle

"We propose getting up an apparatus in an underground lake or deep in the ocean in order to separate charged particle direction by Cherenkov radiations" M. Markov 1960

3

Detector: 3D array of

photomultipliers

Detection principle

 Detectors buried deep
 Use veto against atmospheric muons
 Detectors optimised for upgoing neutrino detection

Physical backgrounds

- Atmospheric muons:
- $\sim 10^{8}/yr 10^{10}/yr$
- Atmospheric neutrinos
- ~10³/yr 10⁵/yr

Neutrino Cherenkov telescopes worldwide

...Dumand

Lake Baikal GVD

IceCube AMANDA PINGU

Adapted from C. Rott

Retired

Prototype

Planned

Water vs. ice ?

(delay w.r.t.

absorption length ≈ 55 m scattering length ≈ 300 m

direct photons) abs

absorption length ≈ 210 m scattering length ≈ 20-40 m

Water: better tracker

Optical activity:

- used for calibration
- opportunity for sea sciences

Ice: better calorimeter

Quiet environment, long-term stability of detector, almost 100% uptime

Experimental signatures

Cascade-like event

Track-like event

At the South Pole: IceCube

At the South Pole: IceCube

lce

laser

21

Major calibration efforts to precisely understand the ice properties around the detector: e.g. optical laser dust logger

Ice Cube observes the first HE cosmic neutrinos!

• Discovery channel: High-Energy Starting Events

```
both hemispheres,

v_e + v_\mu + v_\tau (tracks+cascades)

energy > 60 TeV

outer layer used as veto against \mu_{atm} \& v_{atm}
```

now 4-year data sample, 6.5 σ significance observation of 3 over-PeV neutrinos

... no source identified so far
...too few events to perform absorption
tomography !

Optical backgrounds in sea water:

Baseline ⁴⁰K decay (~40 kHz) bioluminescence

+ bioluminescence bursts (correlated with sea currents)

40K decay can be used for time calibration and monitoring of the efficiency of optical modules

(stable concentration of 40K; Up to 150 photons per decay)

Causality conditions on the time and position of hits allow to filter out the optical background Track reconstruction: fitting algorithms based on PDFs for hit time residuals

Causality conditions on the time and position of hits allow to filter out the optical background Track reconstruction: fitting algorithms based on PDFs for hit time residuals

26

What does this event display represent ?

Causality conditions on the time and position of hits allow to filter out the optical background Track reconstruction: fitting algorithms based on PDFs for hit time residuals

What does this event display represent ?

...a muon induced by an upgoing neutrino !

Oscillation measurements with neutrino telescopes

At the South Pole: PINGU

use IceCube/DeepCore as veto for atmospheric muons

Main goal: determination o f the neutrino mass hierarchy

Funding request in preparation

See PINGU Letter of Intent arXiv:1401.2046 Recent update: arXiv:1607.02671

(a) Normal neutrino mass ordering assumed.

Ongoing geometry optimisation...

6 Mton instrumented volume ~30 000 upgoing neutrinos/yr

(b) Inverted neutrino mass ordering assumed.

Earth tomography with PINGU ?

Performances for track channel (v_{μ} CC):

Earth tomography with PINGU: core composition

A few years of PINGU \rightarrow ~30 Mton yr:

Exclude extreme composition models for the outer core ? Probe the Hydrogen content ?

Rott, Taketa & Bose Scientific Reports 5, 15225 (2015)

Model name	Z/A ratio	O(wt%)	C(wt%)	S(wt%)	H(wt%)	Si(wt%)		
Single-light-element model (maximum abundance)								
Fe+11wt%O ^{32,34}	0.4693	11	-	-	-	-		
Fe+12wt%C ⁵	0.4697	-	12	-	-	-		
Fe+13wt%S ⁵	0.4699	-	-	13	-	-		
Fe+1wt%H ⁵	0.4709	-	-	-	1	-		
Fe+18wt%Si 32	0.4715	-	-	-	-	18		
Multiple-light-element model								
Huang2011 31	0.4678	0.1	-	5.7	-	-		
McDonough2003 30	0.4682	0	0.2	1.9	0.06	6		
Allegre2001 ²⁹	0.4699	5	-	1.21	-	7		
						51		

Earth tomography with PINGU: core composition

CAVEATS:

- Optimistic resolutions below 5 GeV
- Normal hierarchy assumed
- 100% detection efficiency down to 1 GeV
- Perfect particle identification (pure track channel)
- no muon background contamination
- No other systematics included

(atmospheric flux, oscillation parameters, neutrino cross-section,...)

Further studies ongoing with realistic PINGU simulations

In the Mediterranean: KM3NeT/ORCA

Depth=2475m

~5.7 Mt instrumented

- **115** strings
- 18 DOMs / string (~50 kt ~ 2 × 5K)
- **31** PMTs / DOM (~3 kt ~ MINOS)
- Total: 64k*3" PMTs

@km3net

KM3NeT is a distributed research infrastructure with <u>2 main physics topics</u>: <u>O</u>scillations and <u>A</u>stroparticle <u>R</u>esearch with <u>C</u>osmics in the <u>A</u>byss Low-Energy studies of atmospheric neutrinos – High-Energy search for cosmic neutrinos

> 2 sites currently under construction in France and Italy:

KM3NeT-Fr (Toulon, close to ANTARES)

KM3NeT-It (Capo Passero, Sicily)

See KM3NeT 2.0 Letter of Intent, J.Phys. G43 (2016) 8, 084001 (arXiv:1601.07459)

9 m

In the Mediterranean: KM3NeT/ORCA

ORCA performance: resolutions

ORCA performance: particle identification

3 classes of events discriminated via Random Decision Forest:

- Tracks
- Cascades
- Atmospheric muons (= background)

Classified as track (9m Spacing)

At 10 GeV:

- 90% correct identification of $v_{\rm e}^{\ \ {\rm CC}}$
- 60% (85%) correct identification of v_{μ}^{CC} (\bar{v}_{μ}^{CC})

36

Classified as shower (9m Spacing)

ORCA performance: background rejection

 v_{u} CC track reconstruction: cut on upgoing events + track fit quality parameter + reconstructed pseudo-vertex + BDT

upgoing

lambda

radius

Earth tomography with ORCA: outer core

Earth tomography with ORCA: mantle

Earth tomography with ORCA: mantle

Earth tomography with ORCA

Including realistic detector Information:

- Resolutions
- Particle ID
- Detector efficiency (effective volume)

better sensitivity to mantle composition

0.46

0.39

Pb

0.466

pure Fe

Fe + Ni

CORE ?

alloy Fe + light

elements

CORE ?

Ω

Earth tomography with ORCA

Performance on tomography depends on neutrino mass hierarchy:

IH \rightarrow resonance in anti-neutrino channel \rightarrow smaller statistics

Cascade channel contribution is sizeable !

CAVEATS:

- No muon background contamination included
- No other systematics included

To be continued...

Conclusions and perspectives

Earth tomography with neutrinos (absorption/oscillation) is an « old » idea, Various experimental setups are conceptually possible

→ see the review by W. Winter, *Earth Moon Planets 99 (2006) 285-307*

Measurement of a (relatively) large $\vartheta_{13} \rightarrow$ possibility to study matter effects on oscillations in the atmospheric sector

determination of the neutrino mass hierarchy

neutrino oscillation tomography of the Earth

... a new generation of water/ice Cherenkov experiments in development/construction: ORCA – PINGU – HyperKamiokande (+ beam) (also other techniques – iron magnetized calorimeter: INO)

- constrain deep Earth composition through a completely independant method
- Ability to exclude extreme models after a few years operation

(performances still to be assessed by detailed studies)

...yet another generation of detectors needed for precise composition measurements & exploration of realistic models for mantle and core composition

- large volume (\rightarrow high statistics): ~10 Mton ?
- \sim 1-2 GeV threshold
- good energy/angular resolution

Remerciements

I am indebted with many colleagues for the preparation of these slides, Special thanks are due to: Simon Bourret, Joao Coelho, Paschal Coyle, Antoine. Kouchner, Carsten Rott and Walter Winter

...as well as to the organizers of this School !

