Muography how - why- who/where/how

Cristina Cârloganu LPC/IN2P3/ CNRS Two useful interactions

TRANSMISSION						
t						
lo I						
$I = I_0 f(\rho)$						
DENSITY						

2D image

- relies on incident flux knowledge
- applicable to very large targets

- 3D image
- necessary to measure each individual track before and after the target
- high position resolution, large area detectors
- small to medium targets

Can be calculated beforehand analytically

Table 1. Transmitted Flux of Ballistic Atmospheric-Muons Behind Different Rock Thicknesses and the Inverted Density Through a Muographic Measurement Affected by a Background Flux of 1.94 m⁻² d⁻¹ deg⁻² (the Quadratic Mean of the MU-RAY and TOMUVOL Measurements Given in Equations (4) and (5))

Integrated Density	Elevation Angle	Transmitted Flux	Integrated Density	Bias
(True, mwe)	(deg)	(m ⁻² d ⁻¹ deg ⁻²)	(measured, mwe)	(%)
500	18	3.18	389.7	-22
1000	11	0.83	539.6	-46
2000	3	0.19	498.3	-75

J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB011969

Ratio to the vertical flux

Background sources

Cecchini & Spurio

10

http://www.geosci-instrum-method-data-syst.net/1/185/2012/gi-1-185-2012.pdf

E_{kin} [GeV]

Fig. 1. Integral fluxes averaged over the 11-yr solar cycle of μ , e, p and photons (ph) arriving at geomagnetic latitudes ~ 40° vs. their kinetic energy.

Muography: who, where, how

Background study

Geophysical Journal International Advance Access published May 19, 2016

Monte Carlo simulation for background study of geophysical

inspection with cosmic-ray muons

Ryuichi Nishiyama1,2

Akimichi Taketa1

Seigo Miyamoto1

Katsuaki Kasahara³

¹Earthquake Research Institute, The University of Tokyo, Japan

²Albert Einstein Center for Fundamental Physics, Laboratory for High-Energy Physics,

University of Bern, Switzerland

³Research Institute for Science and Engineering, Waseda University, Japan

C. Cârloganu 21.07.2016

Muography: who, where, how

Geosci. Instrum. Method. Data Syst., 3, 29–39, 2014 www.geosci-instrum-method-data-syst.net/3/29/2014/ doi:10.5194/gi-3-29-2014 © Author(s) 2014. CC Attribution 3.0 License.

Experimental study of source of background noise in muon radiography using emulsion film detectors

C. Cârloganu 21.07.2016

Muography: who, where, how

MIM)

Table 1. The number of the selected tracks for the three angular domains (a), (b), and (c) for the quartet detector (top) and EC (bottom). The last rows show the particle fluxes with efficiency compensation using ϵ_{tot} values for each inclination range.

Quartet detector: $S = 27 \text{ cm}^2$, $T = 1.45 \times 10^7 \text{ s}$							
inclination range: θ^{Q}	domain (a)	domain (b)	domain (c)	efficiency (%)			
0-0.126	151	71	_	91.5			
0.126-0.200	168	34	-	90.2			
0.200-0.262	1	3	27	72.4			
0.262-0.317	-	_	20	62.0			
0.317-0.368	-	_	28	54.5			
0.368-0.416	_	_	27	50.3			
0.416-0.461	_	_	2	45.4			
total statistics	320	108	104				
flux: $F^{Q}(cm^{-2}sr^{-1}s^{-1})$	$(2.97 \pm 0.17) \times 10^{-5}$	$(8.25 \pm 0.80) \times 10^{-6}$	$(1.19 \pm 0.12) \times 10^{-5}$				
estimated density $(g cm^{-3})$	$1.18^{+0.04}_{-0.04}$	$0.76^{+0.05}_{-0.05}$	$0.23^{+0.02}_{-0.02}$				
ECC detector: $S = 27 \text{ cm}^2$, $T = 1.45 \times 10^7 \text{ s}$							
inclination range: θ	domain (a)	domain (b)	domain (c)	efficiency (%):			
0-0.200	_	15	2	>			
0.200-0.317	27	2	_	98.4			
0.317-0.416	75	_	_	94.4			
total statistics	102	17	2				
flux: $F^{\text{ECC}}(\text{cm}^{-2}\text{sr}^{-1}\text{s}^{-1})$	$(8.23 \pm 0.81) \times 10^{-6}$	$(1.15 \pm 0.28) \times 10^{-6}$	too low statistics				
estimated density $(g cm^{-3})$	$2.33^{+0.12}_{-0.10}$	$2.00^{+0.23}_{-0.17}$	too low statistics				

C. Cârloganu 21.07.2016

TOMUVOL-MURAY 2013 campaign on Puy de Dôme

TOMUVOL 2015 campaign on Puy de Dôme

For the moment, systematic uncertainty estimated from comparison between data and model in the free sky

MIMV

- effective surface
- position & angular resolution
- energy(momentum) threshold
- time resolution
- dead time
- weightrobustness
- power consumption
- price
- calibration
- background rejection
-

Early muographic attempts: George, 1955

Commonwealth Engineer, July 1, 1955

MIM'

Cosmic Rays Measure Overburden of Tunnel

 Fig. 1—Geiger counter "telescope" in operation in the Guthega-Munyang tunnel. From left are Dr. George and his assistants, Mr. Lehane and Mr. O'Neill.

Geiger counter telescope used for mass determination at Guthega project of Snowy Scheme . . . Equipment described

By Dr. E. P. George" University of Sydney, N.S.W.

Early muographic attempts: Alvarez 1970

Fig. 6 (left). The equipment in place in the Belzoni Chamber under the pyramid. Fig. 7 (right). The detection apparatus containing the spark chambers.

Fig. 13. Scatter plots showing the three stages in the combined analytic and visual analysis of the data and a plot with a simulated chamber. (a) Simulated "x-ray photograph" of uncorrected data. (b) Data corrected for the geometrical acceptance of the apparatus. (c) Data corrected for pyramid structure as well as geometrical acceptance. (d) Same as (c) but with simulated chamber, as in Fig. 12.

Transmission muography:: inside or outside?

MIM

Universidad Nacional Autonoma de México

Monitoring subsurface CO² emplacent and security of storage using muons

When a tunnel / borehole / cavity available use it to host your detector and look above your heads

- for metal deposits (@ Triumph, scintillators)
- for water infiltration or rock structure alterations
 - little/no background (shielded by the target)
 - can use lower energy muons
 - generally little space
 - sometimes demanding environment

Centre for Research into Earth Energy Systems

Cosmic Ray Muon Tomography; A New Method for Monitoring Sweep in Oilfield Waterfloods?

energy today

Jon Gluyas¹, Vitaly Kudryavtsev², Lee Thompson², Dave Allan¹, Chris Benton³, Paula Chadwick¹, Sam Clark¹, Max Coleman⁴, Joel Klinger², Cathryn Mitchell³, Sam Nolan¹, Sumanta Pal², Sean Paling⁵, Neil Spooner²,

Sam Telfer², David Woodward²

¹Department of Earth Sciences, Centre, Durham University, ²Department of Physics and Astronomy, University of Sheffield, ³JEngineering School, University of Bath, ⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA ⁵Science & Technology Facilities Council, Rutherford Appleton Lab, Didcot

PESGB DEVEX, Aberdeen, May 2015

CO₂ storage monitoring

- Successful capture and storage isn't the end of the problem
- EU legislation is likely to require less than 1% leakage per 1000 years

- Monitoring will be required
- Costs of monitoring will need to factored in

http://www.co2captureproject.org/operation.html

Borehole Detector Prototype

C. Cârloganu 21.07.2016

Muography: who, where, how

Search for cavities in the Teotihuacan Pyramid of the Sun using cosmic muons: preliminary results.

S. AGUILARI, R. ALFARO1, E. BELMONT1, V. GRABSKI1, T. IBARRA1, V. LEMUS1, L. MANZANILLA2 A. MARTINEZ1, A. MENCHACA-ROCHA1, M. MORENO1 AND A. SANDOVAL1, 1 Instituto de Fisica, Universidad Nacional Autonoma de Me´xico, Me´xico. 2 Instituto de Investigaciones Antropolo´gicas, Universidad Nacional Autonoma de Mexico Me´xico. 33RD INTERNATIONAL COSMIC RAY CONFERENCE, RIO DE JANEIRO 2013 THE ASTROPARTICLE PHYSICS CONFERENCE

top view of the pyramid

6x1m² MWPCs for tracking

MIM

Muography: who, where, how

Eiger Muon Tomography: Mapping the subglacial bedrock topography of an active mountain glacier

- Using the density contrast to map the ice/rock boundary
 - Aiming for 3D inversion of results with different detector sites in a railway tunnel

μ

H Method: Nuclear Emulsion Films

✦ \diamond_{\diamond} ≵ Emulsion: ~50 µm ✦ ✦ ✦ ✦ Lead plate: ~1 mm ✦ Base plate (plastic): ~180 µm ✦ Basetrack Cluster \diamond Reconstructed track Microtrack

 $u^{\scriptscriptstyle b}$

5 UNIVERSITÄT

BERN

First Simulation: Prototype detector

BERN

25

Napoli underground (Toledo station)

Fig. 2. Photo of the Muontomograph deployed in the Ajándék Cave in Pilis Mountains, Hungary.

Aluminium Support Frame

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Portable cosmic muon telescope for environmental applications

Gergely Gábor Barnaföldi^a, Gergő Hamar^{a,b}, Hunor Gergely Melegh^c, László Oláh^b, Gergely Surányi^d, Dezső Varga^{b,*}

* Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, 29-33 Konkoly-Thege Miklós Str., H-1121 Budapest, Hungary ^b Department of Physics of Complex Systems, Eötvös University, 1/A Pázmány P. sétány, H-1117 Budapest, Hungary ^c Budapest University of Technology and Economics, 3-9 Műegyetem rkp., H-1111 Budapest, Hungary

^d Geological, Geophysical and Space Science Research Group of the HAS, Eötvös University, 1/C Pázmány P. sétány, H-1117 Budapest, Hungary

1,5 mm resolution 10 MeV threshold 32x32 cm2 surface

SEVIER

Long range muography of volcanoes

- close to the target
 - statistics optimised
 - can generally isolate the target from neighboring relief
 - no need for extraordinary resolution
 - deployment difficulties
 - tropicalisation / safety issues
- safely away from the target
 (~ kilometers)
 - deployment/safety issues minimised
 - larger detectors needed
 - very good resolution required, helps with background rejection

- 2. Tanaka et al.(2007) Showa-Shinzan
- 3. Lesparre et al.(2012) La Soufrière Guadeloupe
- 4. Carbone et al.(2013) Etna
- 5. Tanaka et al.(2009,2014) SatsumaIwojima
- 6. Cârloganu et al.(2013) Puy de Dôme
- 7. Tanaka et al.(2010) Asama
- 8. Miyamoto et al.(2012,JpGU) Unzen
- 9. Perez et al.(2012,AGU) Teide
- 10 Lesparre et al.(2012) La Soufrière Guadeloupe
- 11.Tanaka and Yokoyama(2013) Meiji-Shinzan
- 12 Lellis et al.(2014,MUOGPAPHERS) Stromboli

@ Tanaka

6

13.Kusagaya et al.(2013,JpGU) Usu 14.Present study Shinmoe-dake

Muography Projects

DIAPHANE

Scintillators + MAPMTs

Micromegas

MURAY MURAVES

C. Cârloganu 21.07.2016

Muography: who, where, how

Muography emulsion projects with contribution of Italian laboratories

- Unzen contributed to data scanning and analysis (2011)
- Stromboli Design, installation and data analysis (2012)
- Teide exposure is completed, scanning is started (2013)
- La Palma modules design, installation, analysis started (2014)

Valeri Tioukov, IUGG2015, Praga

Nuclear Emulsions as Muons detector

Very high angular resolution (better then 2 mrad) in thin (300 microns) plates
Compact and easy to transport
But:
Complex and time consuming data processing (emulsion scanning)

•Good news: Fast Scannig is already developed for Neutrino physics (OPERA experiment)

The OPERA detector: 8.9 mln films with the total emulsion sensitive surface of 200000 $\rm m^2$

Tomography images taken with 2.5 microns step

8 µm

56 lead plates ₃₂ 10x12x7 cm, 8 kg

Emulsions extraction after 5 months exposure. The envelopes are in a good shape

View from the detector position (640m asl, about 600 m linear distance to craters) To keep memory about the module orientation 3 fixed vertices were installed and the distances measured with the laser distanziometer (+-2 mm accuracy) GPS data were recorded on 2

detector and on 2 vertex points

3

10/2/2015

35

2

1

For precise definition of the mount shape by muons data the Mount (positive ty) was subtracted from the free Sky (negative ty) and normalized to Sky

MIM)

Cherenkov telescopes : CTA (10.1016/j.nima.2015.10.065

secondary optics is a monolithic 1.8 m diameter mirror

matrix of Silicon Photomultiplier (SiPM)

C. Cârloganu

15.07.2016

Muon detection

The primary mirror of the telescope has a 4.2 m diameter

Cherenkov telescopes : CTA (10.1016/j.nima.2015.10.065

Ring centre = muon arrival direction with respect to the telescope optics axis. precision ~ 0.14°

detect muons by collecting in a single ring the light emitted along the last ~100 m of its path towards the primary mirror energy threshold ~20 GeV and the muon hits the primary mirror up to an off-axis angle of 3.6°

Muon detection

C. Cârloganu

15.07.2016

Muon detection

Proof of Principle for Muographic Imaging of Volcanoes

MIM

R

Muography: who, where, how

CALICE GRPC's

Avalanche mode: total mean MIP charge 2.6pC, RMS: 1.6pC

Iarge area (1m²) detection rate up to 100Hz/cm² robust, highly efficient noise level less than 1Hz/cm² very cheap

GRPC-Lyon

Tomuvol: a typical data taking campaign

Network :

La Taillerie : using wifi antenna, relayed by the Puy-de-Dôme.
Col de Ceyssat : "regular" Internet Service Provider.

Integrated number of selected tracks (Millions)

MIM'

21.07.2016

MIM

E

TOMUVOL 2015 campaign on Puy de Dôme

- Very preliminary results on the CDC 2015-2016 campaign
- 99.6 effective days of data taking
- 1 m² detector

Puy de Dôme : gravimetry vs muography data

Gravimetric model

- The muon data are obviously contaminated close to the border, e.g. uncertainties on the muon direction, background leakage flux of low energy particles.
- There is a qualitative agreement on a denser core below 15° of elevation, but • not for the somital area.

Puy de Dôme : gravimetry vs muography data

• Build a residual like test statistic as $\sum_{i} \frac{(o_i - m_i - b_i)^2}{\sigma_i^2}$ between

the observation (o_i) and the expectation ($m_i - b_i$) normalised to the statistical uncertainties (σ_i), with *i* the bin.

- The distribution has a χ^2 like shape.
 - No uncertainties in the gravimetric model
 - No systematic uncertainties on muography
 Below 6° from the border
 - - Muon vs gravimetric data disagree at 2.9 σ (p-value = 3.6⁻⁴)
 - Muon data vs uniform model disagree at 3.9 σ (p-value = 1.10⁻⁴)
- To be improved with better uncertainties treatment and joint inversion.

Frequentist measurement vs bayesian hypothesis testing

Puy de Dôme as seen from the muon telescope site

nowadays common X-ray

2012 proton radiography H. Sadrozinski, IEEE