

DIPARTIMENTO DI SCIENZE GEOLOGICHE Seismology

Seismic constraints on global thermo-chemical structure of the Earth's mantle

Fabio Cammarano

I use an interdisciplinary approach - seismology, mineral physics, geodynamics - to study the interior of the Earth and planetary bodies.

- Physical properties of the Earth's mantle
- Inversion of Seismic waveforms and gravity data for temperature and composition
- Compositional and thermal structure of the lithosphere
- Planetary studies

Seismology provides the best resolved images of Earth's interior structure!

✓ Since the 80's, seismic tomography helped to resolve mantle 3-D structure. Yet, even large scale structures lack a clear physical meaning.

WHY?

- Trade-off between temperature (T) and composition (C)
- Uncertainties in mineral physics, i.e. in the relationships between seismic velocities and T-C
- Interpretation requires absolute seismic velocities

Seismic models are different => it is known that differences arises from data types used and coverage, their relative weighting, damping factors, model parametrization, crustal and anisotropic corrections, starting reference model..., but tracing back the exact sources of differences between models is very hard.

T-C Upper mantle (top 300km)

- Relation with surface processes: Plate-tectonics => active subductions, volcanism
- Old, stable continents (> 3 billion y.) and young oceans

Earth is a very dynamic system, yet the stable part of continents formed > 3 billion of years ago and, since then, survive destruction!

T-C Upper mantle (top 300km)

- Relation with surface processes: Plate-tectonics => active subductions, volcanism
- Old, stable continents (> 3 billion y.) and young oceans

 ◆ Continental lithospheric mantle is cold (seismically fast) and chemically depleted → tectosphere

T-C Upper mantle (top 300km)

- Relation with surface processes: Plate-tectonics => active subductions, volcanism
- Old, stable continents (> 3 billion y.) and young oceans

Some open questions:

- How deep is the continental lithosphere?
- Is there an incontrovertible compositional signature in global seismic models?
- Are the continents compositionally different?
- How much water (and how deep) is carried out by the slabs within the mantle?
- How this affect dynamics?

> Upper mantle (top 300km)

 ✓ Oceanic lithosphere and upper mantle → understand plate-tectonics dynamics

✓ Understand the origin and evolution of stable continental regions → understand evolution of our planet

In order to do this, it is fundamental to determine the thermal and compositional heterogeneity of the lithosphere and.

On a global scale, top of upper mantle well sampled by surface waves

25

On a global scale, top of upper mantle well sampled by surface waves

✓ Correlation coefficient >0.9

All global VS models show very similar long-wavelength structure at 100-200 km depth

✓ Mineral physics (elastic and anelastic parameters) => $V_s(P,T)$ for given compositions

V_s variations mostly sensitive to T
 Anelasticity effects should be considered

T structure is well determined, but absolute T is affected by variation in amplitudes of V_S anomalies

T structure is well determined, but absolute T is affected by variation in amplitudes of V_S anomalies

- Accounting for firstorder C variations between continents/ ocean
- And for the large uncertainties in anelasticity do not vary much inferred T

Constraints on absolute T:

 Heat-flow surface data provide additional constraints on continental lithospheric T structure
 Geochemical inferred oceanic T (1280-1400 °C, e.g. Gale 2014) and cooling models on oceanic regions.

Long-wavelength T structure known in the UM => seismically inferred T models

What about composition?

*... additional constraints for global C field

- Adding gravity data => compute and remove T density field, look at the gravity anomaly residuals
 Problems: uncertainties in the crustal density structure (Guerri et al. 2015), limited resolution of lithospheric mantle
- Run a joint inversion for V_S and V_P structure => SPani global model (Tesoniero et al 2015)

✤ SPani: a global V_P - V_S model

✓ Invert a large database of surface waves and P and S body waves

Author	Phase and dominant period	Number of measurements
[Ekström, 2011]	R0 25-250s	1022706
	L0 25-250s	342261
[Visser et al., 2008]	R1 35-172s	396432
	R2 35-149s	364140
	R3 35-87s	253143
	R4 35-61s	159448
	R5 35-56s	114037
	R6 35-50s	71652
	L1 35-176s	331168
	L2 35-115s	250315
	L3 35-78s	154160
	L4 35-62s	81592
	L5 35-56s	42756

Table 2.	Body wave phases used in this study			
	Author	Phase	Number of measurements	
	[Antolik et al., 2003]	Р	621892	
		pPP	12054	
		pP	20780	
[Ritsem	[Ritsema and van Heijst, 2002]	PP	167144	
		PPP	15060	
		pPPP	2089	
		S	144696	
		SKS	31971	
	[Pitnema at al 2011]	SKKS	8727	
	[11115ema et al., 2011]	ScS	8475	
		ScSScS	13505	
		ScSScSScS	7983	

- Ray-theory
- Crustal corrections (as in Boschi and Ekström 2002)
- Parameterization: 5°x5° and 28 layers
- Solving for V_{SV} , V_{SH} , V_{PV} , V_{PH} with respect to **PREM**
- Applying roughness damping and a-priori mineral physics constraint

✤ SPani: a global V_P – V_S model

✓ Invert a large database of surface waves and P and S body waves

✤ SPani: a global V_P – V_S model

- ✓ Invert a large database of surface waves and P and S body waves
- \checkmark Exploit V_P sensitivity of Rayleigh waves

ROMA

✤ SPani: a global V_P – V_S model

- ✓ Invert a large database of surface waves and P and S body waves
- \checkmark Exploit V_P sensitivity of Rayleigh waves
- \checkmark Include a regularization constraint on $\delta lnV_s/\delta lnV_P$

Shear velocity model

Compressional velocity model

✓ Any decorrelation between V_P and V_S structure may be indicative of possible compositional effects

<u>**Warning:**</u> A quantitative analysis of the V_P/V_S ratio can only be done if absolute velocities are known

✓ Any decorrelation between V_P and V_S structure may be indicative of possible compositional effects

<u>**Warning:**</u> A quantitative analysis of the V_P/V_S ratio can only be done if absolute velocities are known

ROMA TRE

Hydration of marginal basins

- V_P is ~2% higher than expected and V_S is not extremely (lower than at midoceanic ridges)
- Relatively high V_P/V_S could be associated with presence of water

=> weakening of the overriding plate

125-150 km depth

Compositional anomalies within the continental lithosphere

- High V_s and low V_p/V_s down to 250 km
- Distinct structural variations within the continents emerge

✓A more fertile Russian platform vs the oldest part of the Baltic shield

✓ Deeper Baltic shield and North American cratons vs Australia, African

o Grift (VP-VP exp)/ VP exp %

125-150 km depth

60°F

60°F

Conclusions (about T-C Upper mantle)

• Our new joint model resolves anomalies in the V_P/V_S ratio that have thermo-chemical implications.

- Marginal basins in the Western Pacific show an anomalously high V_P/V_S ratio which is compatible with high concentration of H_20
- Our model suggests large-scale compositional variations within continental regions: regions interested by rifting and collisions are more *enriched* than undeformed Precambrian areas

T-C Lower mantle (from ~800km downward)

- Mantle convection: Fate of subducted slabs, upwelling
- Two large low shear-velocity provinces (LLSVPs) compatible with degree 2 geoid: thermal or thermochemical?

ROMA TRE

T-C Lower mantle (from ~800km downward)

- Mantle convection: Fate of subducted slabs, upwelling
- Two large low shear-velocity provinces (LLSVPs) compatible with degree 2 geoid: thermal or thermochemical?

Some open questions:

- Are the LLSVPs required to be compositionally heterogeneous and to what extent?
- Are the slabs deflecting or stagnating in the mid-mantle? => is there any viscosity (large) variation within the mantle?

ROMA

 What is the length-scale of compositional anomalies in the lower mantle

- ✓ In agreement with other models, **two LLSVPs** beneath Africa and Pacific
- $\checkmark\,$ Pacific V_{S} anomaly more scattered than African one
- ✓ In general , high correlation between V_P /V_S, but also robust structural variations throughout the mantle
 ROMA

- $\checkmark\,$ Pacific V_s anomaly more scattered than African one
- ✓ In general , high correlation between V_P / V_S , but also robust structural variations throughout the mantle TRE

✓ Slab morphology is consistent with V_P recent images (Fukao & Obayashi 2013) => stagnant slabs above 660km or in the mid-mantle

MA

ATRE

Heterogeneity ratio R=δlnV_S/δlnV_P is an important diagnostic parameter

✓ High spherically-averaged R in the lower mantle and high R in LLSVPs has been used as an indicator of compositional heterogeneity

\checkmark <R> is affected by model resolution and regularization

✓ R in LLSVPs is affected by model resolution and regularization

 All V_P-V_S models (non only SPani) show a trend towards high R as anomalies (negative and positive) get larger

 Synthetic test shows that small decorrelations between V_P and V_S modifies the statistical distribution and <u>overestimates R in LLSVPs</u>

Are large-scale chemical anomalies required in correspondence of LLSVPs?

 Owing to uncertainties in mineral physics, lower R values than previously estimated in LLSVPs do not preclude the occurrence of first-order C anomalies

• Important to use additional constraints

Effects on density

EOS: Stixrude & Lithgow Bertelloni 2011

DMA

 Trade-off with (depth-dependent) viscosity and lowresolution from geoid do not provide conclusive evidence that LLSVPs are isolated reservoirs => more diffuse chemical variations throughout the mantle!

Conclusions (about T-C Lower mantle)

- Statistical distribution of R = δlnV_S/δlnV_P hardly to be determined since strongly depends on model resolution and regularization
 - → Spherically average value: possible range of models (more or less smooth) give significantly different values compared to predicted R from thermal interpretation.
 - → <u>R in LLSVPs</u> could be overestimated

 We do not find any conclusive evidence for LLSVPs corresponding to thermo-chemical piles → V_P vs V_S seismic structure suggests diffuse chemical heterogeneity and thus a more complex lower mantle

