

SUMMER INSTITUTE: USING PARTICLE PHYSICS TO UNDERSTAND AND IMAGE THE EARTH

11-21 July 2016 Gran Sasso Science Institute Europe/Rome timezone

Argon, geoneutrinos

Ondřej Šrámek Department of Geophysics Charles University in Prague <u>ondrej.sramek@gmail.com</u> <u>geo.mff.cuni.cz/~sramek</u>

High mantle Urey ratio?

Urey ratio = $\frac{\text{radiogenic power}}{\text{surface heat loss}}$

20 TW radiogenic power in BSE $\,\leftrightarrow\,$ Mantle Ur $\sim\,0.3$

- Deschamps et al. 2010, Nu–Ra scaling based on 3-D spherical shell numerical simulations of convection: "Applied to the Earth's mantle, the mixed heating scaling predicts a Urey ratio between 0.4 and 0.6, depending on the Rayleigh number." (between 23 and 31 TW radiogenic power in BSE)
- <u>Nakagawa & Tackley 2012</u>: "The Urey ratio that is calculated purely from convective heat flow is always higher than 0.5 [19 TW in BSE]. When magmatic heat flow is included, the Urey ratio is slightly lower at the present day"
- Lenardic et al. 2011: Including continents is important. Results from numerical models relax the tension between classical convection models and lower Urey ratio estimated from geochemical models.

Earth energy budget

Jaupart et al. 2015 in Treatise on Geophysics

Argon

⁴⁰Ar ... radiogenic, stable ³⁶Ar ... primordial, stable ³⁹Ar ... radioactive, $t_{1/2} = 269$ y

Atmosphere

⁴⁰Ar from degassing of Earth ³⁹Ar produced cosmogenically: ⁴⁰Ar(n,2n)³⁹Ar ⁴⁰Ar/³⁶Ar = 295 ³⁹Ar/⁴⁰Ar = 8×10^{-16}

Underground

⁴⁰Ar produced by electron capture on ⁴⁰K

Dark matter WIMP search and underground argon

- DarkSide-50 experiment (<u>darkside.lngs.infn.it</u>)
- Dark matter detectors looking for Weakly Interacting Massive Particles (WIMPs) require low radioactivity argon
- Atmospheric level (39 Ar/ 40 Ar = 8×10⁻¹⁶) is too high (~1 decay per sec per kg)
- Gas from deep CO₂ wells shows lower level of ³⁹Ar, e.g., Doe Canyon near Cortez Colorado
- <u>Xu et al. 2015</u>: ³⁹Ar activity a factor of 150 below atmospheric
- Agnes et al. (DarkSide) 2016: ³⁹Ar activity a factor of 1400 below atmospheric
- Cosmogenic production attenuated with depth in the Earth. At depths > 700 m, nucleogenic production of ³⁹Ar dominates.

Underground production of noble gases

Producing a particles

Travel distance of α particle in rock

Cross section of (α, n) reaction

Threshold energy E_{th} + overcoming Coulomb barrier V_c

 $E_{th} = -\frac{m_1 + m_2}{m_2}Q \qquad V_C = \frac{1}{4\pi\epsilon_0}\frac{q_1q_2}{r}$

O.Š., Stevens, McDonough, Mukhopadhyay, Peterson, submitted

Probability of neutron production

O.Š., Stevens, McDonough, Mukhopadhyay, Peterson, submitted

Neutron energy in MeV

Calculated production rates

Neutron energy spectra are input into MCNP6 simulation to calculate ³⁹Ar yields from ³⁹K(n,p)³⁹Ar

Composition	⁴ He	neutrons	²¹ Ne	³⁹ Ar
Upper Continental Crust	1.64×10^{10}	10680	753	28.7
Middle Continental Crust	8.98×10^{9}	6114	416	13.9
Lower Continental Crust	1.53×10^{9}	1129	70.2	0.749
Bulk Oceanic Crust	3.79×10^{8}	260	15.8	0.0235
Depleted Upper Mantle	2.51×10^{7}	22.4	1.06	0.000257

Predicting ³⁹Ar/⁴⁰Ar produced underground

Source rock has even lower K, Th, U? Initially degassed rock assumption no good? Accumulation of gas in isolated reservoir in the crust?

Message from the mantle?

Or story of the crust?

Source rock has even lower K, Th, U? Initially degassed rock assumption no good? Accumulation of gas in isolated reservoir in the crust?

Geoneutrinos

U and Th decays produce detectable antineutrinos

Geoneutrino flux proportional to U, Th concentration

Scales as 1/distance² from source

Predicting geoneutrino flux from geological models

$$\phi(\vec{r}) = \frac{X\lambda N_A}{\mu} n_v \langle P_{ee} \rangle \iiint \frac{A(\vec{r}')\rho(\vec{r}')}{4\pi |\vec{r} - \vec{r}'|^2} \mathrm{d}\vec{r}'$$

ρ ... material density [kg/m³]A ... abundance of Th, U [g/g]

Geoneutrino measurements: current status

Geoneutrino detecting experiments by 2025(?)

Geoneutrino measurements by 2015 (?)

Interrogate mantle structure?

Assume these piles represent an enriched reservoir.

Mantle geoneutrino flux prediction

Detectable?

Detecting mantle structure

