

SUMMER INSTITUTE: USING PARTICLE PHYSICS TO UNDERSTAND AND IMAGE THE EARTH

11-21 July 2016 Gran Sasso Science Institute Europe/Rome timezone

Basics of heat flow

Ondřej Šrámek Department of Geophysics Charles University in Prague <u>ondrej.sramek@gmail.com</u> <u>geo.mff.cuni.cz/~sramek</u>

What is the heat output from solid Earth?

Heat flow measurement sites

~38000 measurement sites

Davies & Davies 2010

Measurements by

- probe technique
- deep-sea drill holes (limited number)

Measures conductive heat flux

Does not account for heat transport by water flow through fractures and porous rock near mid-oceanic ridges

Jaupart et al. 2015 in Treatise on Geophysics

Cooling of semi-infinite half-space

I will use Google before asking dumb questions. www.mrburns.nl before asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google before asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google before asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google before asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google before asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google before asking dumb questions. I will use Google before asking dumb questions

Error function

η

Cooling of oceanic lithosphere

from David Sandwell

$$\frac{T - T_0}{T_1 - T_0} = \operatorname{erf}\left(\frac{z}{2\sqrt{\kappa t}}\right)$$

$$q\Big|_{z=0} = -k\frac{\partial T}{\partial z}\Big|_{z=0} = -\frac{k(T_1 - T_0)}{\sqrt{\pi\kappa t}}$$

$$t \rightarrow \frac{x}{v}$$

age of the lithosphere

Cooling of oceanic lithosphere

$$\frac{T - T_0}{T_1 - T_0} = \operatorname{erf}\left(\frac{z}{2\sqrt{\kappa t}}\right)$$

Oceanic heat flow vs. age

AGE IN MA

$$q\big|_{z=0} = -k\frac{\partial T}{\partial z}\Big|_{z=0} = -\frac{k(T_1 - T_0)}{\sqrt{\pi\kappa t}}$$

Sclater et al. 1980 Rev.Geophys.

Ocean depth vs. age

$$d_{tot}(t) = d_o + \frac{2\rho_m \alpha (T_m - T_o)}{(\rho_m - \rho_w)} \left(\frac{\kappa t}{\pi}\right)^{1/2}$$

Ocean depth vs. age

AGE IN MA

Sclater et al. 1980 Rev.Geophys.

For ocean floor ages > 80 My, half-space cooling model deviates from measurements

Uniform heat-flux (48 mW/m²) is a good approximation for > 80 My.

Sclater et al. 1980 Rev.Geophys.

50

AGE IN MA

25

5

ю

100

200

6000

Ocean floor age map +

Half-space cooling model for ages < 80 My & Uniform heat flux for ages > 80 My

\Rightarrow Integrate heat loss through oceans: 32 ± 2 TW

Tectonic ages of continents

Artemieva 2006

Continental geotherms

Artemieva 2006

Global surface heat loss

Table 3Estimates of the continental and oceanic heat flux and globalheat loss

00	Continental (mW m ⁻²)	Oceanic (mW m ⁻²)	Total (TW)
Williams and von Herzen (1974)	61	93	43
Davies (1980a,b)	55	95	41
Sclater et al. (1980)	57	99	42
Pollack et al. (1993)	65	101	44
Davies and Davies (2010)	71	105	47
This study ^a	65	94	46

Jaupart et al. 2015 in Treatise on Geophysics

^aThe average oceanic heat flux does not include the contribution of hot spots. The total heat loss estimate does include 3 TW from oceanic hot spots.