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Athanaseus Kircher (~1665): 
Systema Ideale Pyrophylaciorum Subterraneorum, Mundus Subterraneus.



0th order scaling



0th order scaling
• Mass … M ~ 6×1024 kg 

• Radius … R ~ 6400 km 

• ⇒ Average material density … ρ = 5600 kg/m3 

• Acceleration of gravity: g(r) = G m(r) / r2  
Assume uniform sphere: g(r) = 4/3 π G ρ r 
G(R) = 10 m/s2 

• Pressure: dP = ρ g dz = −ρ g dr  
P(r) = P0 − 2/3 π G ρ2 r2  
P(R) = P0 − 178 GPa           (100 GPa = 1,000,000 × 0.1 MPa)

Atmospheric pressure



Layered structure



Spherically symmetric Earth model

Density ρ Acceleration of gravity g  Pressure P

Inner Core: solid metal

Outer Core: 
molten metal

Mantle: 
silicate rock 
in solid state

Crust: silicate rock of lower density

“PREM”: Dziewonski & Anderson (1981):  
“Preliminary Reference Earth Model”  

Phys. Earth Planet. Int. 25, doi:10.1016/0031-9201(81)90046-7

CMB = Core–mantle boundary

• non-uniform density: layering + effects of compressibility 
• corresponding depth-dependence of g, P 

Notice:

http://dx.doi.org/10.1016/0031-9201(81)90046-7


Temperature in the Earth

Bukowinski 1999

Mantle

Outer core

Inner core

http://dx.doi.org/10.1038/46696


Scientific drilling

Kola Superdeep Borehole
12.262 km deep

compare with Earth radius 
~6371 km



Study of (deep) Earth

Measurement and analysis of 
gravity field

Observations and sample 
collections possible at surface

Numerical modeling of dynamic 
flow in the interior

Experiments in minerals at high 
pressure and temperature

Fluid mechanics experiments in 
laboratory

First principles (“ab initio”) 
calculations of material properties

Study of earthquakes and 
propagation of seismic waves

Geochemical analyses of Earth and 
meteorite samples

Detection of geoneutrinos,  
“particle geoscience“



Seismicity of the Earth

marc.fournier.free.free.fr/enseignement/world_seismicity_map.jpg

http://marc.fournier.free.free.fr/enseignement/world_seismicity_map.jpg


• Apparent wander of geomagnetic pole 

• Continental drift 

• Mapping of ocean floor ~1950’s 

• Mid-oceanic ridges (MOR) 

• Pattern of magnetic anomalies at MOR 

• Depth of ocean floor

Clues toward plate tectonics hypothesis



Apparent polar wander



Wikipedia

Vine–Matthews–Morley hypothesis

Vine 1966 Science

Wikimedia

http://en.wikipedia.org/wiki/File:East_Pacific_Rise_seafloor_magnetic_profile_-_observed_vs_calculated.png
http://dx.doi.org/10.1126/science.154.3755.1405
http://commons.wikimedia.org/wiki/File:Oceanic.Stripe.Magnetic.Anomalies.Scheme.svg


Surface heat flux of the Earth

Jaupart et al. 2015 in Treatise on Geophysics

http://dx.doi.org/10.1016/B978-0-444-53802-4.00126-3


Wessel & Müller 2015 in Treatise on Geophysics

Sea floor age

http://dx.doi.org/10.1016/B978-0-444-53802-4.00111-1


Tectonic plates

Wikimedia

http://commons.wikimedia.org/wiki/File:Tectonic_plates_for_HKDSE_Geog.svg


Wikimedia

GPS measured plate velocities

https://commons.wikimedia.org/wiki/File:Global_plate_motion.jpg


Model of plate velocities

Queré & Forte 2006 GJI

http://dx.doi.org/10.1111/j.1365-246X.2006.02990.x


Looking deeper

Wikimedia

http://commons.wikimedia.org/wiki/File:Tectonic_plate_boundaries.png


Plate tectonics  ⟺  Mantle convection

Convection 
in the mantle

Convection  
in the outer core



What powers the dynamics

• Earth’s cooling 

• Energy sources: long-lived radioactivity 
• 238U, 232Th, 40K 
• how much radiogenic heat? 
• how spatially distributed?



Thermal convection

[James Imamura]

viscous fluid 
heated from below / cooled from top 

temperature-dependent density

http://hendrix2.uoregon.edu/~imamura/102/section3/chapter16.html


BlazePress

Mantle: solid-state convection
Most of the mantle is solid, i.e., below melting temperature

Ice behaves like solid at short time scale …flows at much longer time scale

water 10−3

honey 101

ice 1010

Earth’s mantle 1021 Pa s

Viscosity in Pa s

at time scales ≫ 103 years, 
fluid-like behavior



Equations for viscous fluid



Equations for incompressible viscous fluid

Boussinesq approximation: 
Only consider density variations in the buoyancy term

�⇢ = �⇢↵�T

Mass

Momentum

Energy

Also uniform viscosity, thermal conductivity

⇢

✓
@v

@t
+ v ·rv

◆
= �rP + ⌘r2v + ⇢g

r · v = 0
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@t
= �v ·rT + r2T +

Q

⇢CP

(EOS)



Modes of heat transfer
Rayleigh number

Onset of convection



Modes of heat transfer

1. Conduction 

2. Advection 

3. Radiation

time scale ⌧c =
d2

  =
k

⇢Cp

time scale ⌧a =
d

v

⌧c
⌧a

=
vd


≈ 104 … mantle

cold

hot

d
@T

@t
= �v ·rT + r2T +

Q

⇢CPconductionadvection



Rayleigh number

Buoyancy

d

ΔT ➝ Δρ

Viscous drag

Buoyancy Fb balanced by viscous drag Fd

Fd = 6⇡⌘vd Stokes’ law

Fb = �⇢gV =
4

3
⇡d3⇢↵�Tg

! v =
2

9

⇢↵�Tgd2

⌘

⌧c
⌧a

=
vd


⇡ ⇢↵�Tgd3

⌘
⌘ Ra

• low Ra … no convection 
• high Ra … convection



Onset of convection
The diffusive solution is a valid solution to the equations of thermal convection.

cold

hot

T = T0(z)

v = 0

r · v = 0

@T

@t
+ v ·rT = r2T

(non-dimensional form)

�rP +r2v �Ra(T � T0)ez = 0

T = T0(z) + ✓(t) sin(⇡z) sin(⇡x)Look for another solution in the form:

! ✓̇ =


k2Ra

(k2 + ⇡2)2
� (k2 + ⇡2)

�
✓

Convection develops if perturbation grows in time (expression in brackets > 0):

Ra > Ras =
(k2 + ⇡2)3

k2

Minimum Ras at k =

⇡p
2

or � = 2

p
2, Rac =

27

4

⇡4 ⇡ 657

Mantle Ra ≈ 108



Critical Rayleigh number

k¼ pffiffiffi
2

p , Rac ¼
27

4
p4 " 657 [149]

What canbe interpreted as the size of one convective cell is p/k
since one wavelength corresponds to two counterrotating cells.
The critical cell has an aspect ratio, width over height, of

ffiffiffi
2

p
.

A Rayleigh number of 657 is the critical Rayleigh number
for the onset of convection in a layer heated from below with
free-slip boundary conditions. As soon as Ra>Rac, there is a
wave number interval over which convection begins. Of
course, when convection grows in amplitude, the marginal
stability solution becomes less and less pertinent as the
assumption that v #—dT$v #—z becomes invalid. The existence
of a critical Rayleigh number and its value, here obtained from
amarginal stability analysis, have also been obtained in a more
general case, where finite amplitude perturbations (instead of
infinitesimal ones) are added to the stationary solution. Below
the critical Rayleigh number, any finite perturbation can be
shown to decay eventually to zero (e.g., Joseph, 1966).

7.02.4.5 Road to Chaos

In Cartesian geometry, when the Rayleigh number reaches its
critical value, convection starts and forms rolls. When the
Rayleigh number is further increased, complex series of con-
vection patterns can be obtained, first stationary, then periodic,
and finally chaotic (see Chapter 7.03). Using the values of
Table 1, the critical Rayleigh number of the mantle would be
attained for a nonadiabatic temperature difference between the
surface and the CMB of only 0.025 K. The mantle Rayleigh
number is several orders of magnitude higher than critical
and the mantle is in a chaotic state of convection.

Figure 4 shows a stationary convection pattern at Ra¼105

and three snapshots of numerical simulation of convection at

higher Rayleigh number. The color scale has been chosen
differently in each panel to emphasize the thermal structures
that decrease in length scale with Ra. This view is somewhat
misleading since all the thermal anomalies become confined
in a top cold boundary layer and in a hot bottom one at large
Rayleigh numbers. Most of the interior of the cell becomes just
isothermal (or adiabatic when anelastic equations are used).
The various transitions of convection as the Rayleigh number
increases will be discussed in other chapters of this treatise (see
Chapters 7.03, 7.04, 7.05).

7.02.5 Introduction to Physics of Multicomponent
and Multiphase Flows

The mantle is not a simple homogeneous material. It is made
of grains of variable bulk composition and mineralogy and
contains fluids, magma, and dissolved volatiles. Discussion of
multicomponent and multiphase flows could deal with
solids, liquids, or gases; include compressibility or not; and
consider elastic, viscous, or more complex rheology. For each
combination of these characteristics, a geophysical applica-
tion is possible. Here, we will restrict the presentation to
viscous creep models (i.e., without inertia), where the various
components are treated with continuous variables (i.e., each
component is implicitly present everywhere). We do not con-
sider approaches where the various components are separated
by moving and deformable interfaces. Our presentation
excludes cases where the problem is to match properties at
macroscopic interfaces between regions of different but
homogeneous compositions.

We will focus on two cases. The first will be when all the
components are perfectly mixed in variable proportions. This
corresponds to the classical chemical approach of multiple
components in a solution. This will provide some tools to
understand mantle phase transitions and the physics of
chemical diffusion and mixing. We will be rather formal
and refer to other chapters of this treatise for the applications
and illustrations (e.g., Parmentier and Tackley, this volume).
Our goal is to explain why and when the advection–diffusion
equation can be used in mantle dynamics. The irreversible
thermodynamics of multicomponent flows is discussed in
various classical books (e.g., de Groot and Mazur, 1984;
Haase, 1990). However, as usual with geophysical flows, the
mantle has many simplifications and a few complexities that
are not necessarily well documented in these classical
textbooks.

The second case will be for two-phase flows in which the
two phases are separated by physical interfaces that are highly
convolved and with spatial characteristics much smaller than
the typical size of geodynamic models. This is typically the case
where magma can percolate through a compacting matrix (see
also Dingwell, vol. 2). This approach was used to model melt
extraction and core–mantle interaction (McKenzie, 1984; Scott
and Stevenson, 1984). Magma migration has also been treated
in a large number of publications where solid and magma are
considered as separated in studies of dike propagation through
hydraulic fracturing (e.g., Lister and Kerr, 1991) or where
fusion is parameterized in some way (e.g., Choblet and
Parmentier, 2001; Ito et al., 1999). We do not discuss these
latter approaches.
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Figure 3 Critical Rayleigh number as a function of the half wavelength
p/k (the size of the convection cells). Above this curve, convection occurs
with a whole range of unstable wavelengths. Below this curve, the
conductive temperature is stable since temperature perturbations of any
wavelength decrease. When the Rayleigh number is increased, the first
unstable wavelength corresponds to a convection cell of aspect ratio

ffiffiffi
2

p

and a critical Rayleigh number of 657.

44 Physics of Mantle Convection

Ricard 2015 in Treatise on Geophysics

http://dx.doi.org/10.1016/B978-0-444-53802-4.00127-5


7.02.5.1 Fluid Dynamics of Multicomponent Flows
in Solution

7.02.5.1.1 Mass conservation in a multicomponent solution
If we want to study the evolution of major or trace element
concentration in the convecting mantle, we can consider the
mantle, instead of a homogeneous fluid, as a solution of
various components i in volumetric proportions fi (withP

ifi¼1) having the densities ri and velocities vi (and later,
thermal expansivities ai and heat capacities Cp

i . . .).
Using a mass balance very similar to what we had discussed

for a homogeneous fluid, we obtain a mass conservation equa-
tion of the form

@ firið Þ
@t

+—$ firivið Þ¼Gi [150]

where Gi is the rate of mass production of component i. This
rate of mass production is zero if no reactions produce the
component i.

In the fluid, the average density is

r¼
X

i

firi [151]

and various average velocities can be defined (weighted by the
mass, the volume, the number of moles, etc., of each compo-
nent i). In this section, we introduce the barycentric velocity, vb
(velocity of the center of mass), defined by

vb ¼
P

firivi
r

[152]

The average mass conservation can be obtained by sum-
ming the equations of component conservation [150],

@r
@t

+r$ rvbð Þ¼ 0 [153]

since the sum of the rates of mass production is zero:

X

i

Gi ¼ 0 [154]

In equation [150], instead of the various component
velocities vi, we can introduce the barycentric velocity vb and
the diffusive flux of the component i with respect to this
average flow,

@ firið Þ
@t

+—$ firivbð Þ¼%—$Ji +Gi [155]

where we define the diffusive flux, Ji, by

Ji ¼firi vi%vbð Þ [156]

By definition of the barycentric velocity eqn [152], the
diffusive flows sum to zero:

X

i

Ji ¼ 0 [157]

Figure 4 Convection patterns of a fluid heated from below at Rayleigh number 105, 106, 107, and 108. The temperature color bars range from 0 (top
boundary) to 1 (bottom boundary). The Boussinesq approximation was used (numerical simulations by F. Dubuffet). The increase in Rayleigh
number corresponds to a decrease of the boundary layer thicknesses and the width of plumes. Only in the case of the lowest Rayleigh number (top left)
is the convection stationary with cells of aspect ratio &

ffiffiffi
2

p
as predicted by marginal stability. For higher Rayleigh number, the patterns are highly

time-dependent.
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Ra = 105

Convection cells

Ricard 2015 in Treatise on Geophysics
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Convection cell

cold thermal boundary layer

hot thermal boundary layer

hot upwelling

cold downwelling

horizontally averaged temperature

isothermal, 
advective heat transport

conductive heat transport

conductive heat transport



Adiabatic temperature gradient

Entropy assume adiabatic

dS(T, P ) =
@S

@T

����
P

dT +
@S

@P

����
T

dP = 0

@T

@P

����
S

=
↵T

⇢Cp
or

@T

@z

����
S

=
↵Tg

Cp



• thermal boundary layers

• upwellings, downwellings

• convection cells

no internal heating

no basal heating

Internal vs. basal heating

mixed heating
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4.2.4
Heat transport in the Earth
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Phase transitionsG. Bellini et al. / Progress in Particle and Nuclear Physics 73 (2013) 1–34 9

Fig. 6. A phase diagram of the mineralogy and thermal gradient of the top 1000 km of the Earth’s mantle. The mode proportion of mantle minerals is
presented on the top x-axis, whereas the temperature scale is shown on the bottom x-axis. The Transition Zone (see also Fig. 5) is marked by the two
major, seismic discontinuities at 410 and 660 km, which are coincident with major phase changes. Assuming a Mg to Fe mole proportion of 9 to 1 for the
bulk composition, the olivine to wadsleyite transition occurs at ⇠1670K and 410 km and the disproportionation of ringwoodite to Mg-perovskite and
ferropericlase occurs at ⇠1870K and 660 km [42,43].

to Mg-perovskite and ferropericlase has a negative Clapeyron slope and so this transition should have an anti-correlation
with that of the 410 km discontinuity. Overall, however, there is little evidence for this anti-correlation [44]. There has
been considerable debate in the community, however, regarding whether or not this phase change also defines a marked
compositional change in the mantle. In large part models differ on the amount of ferropericlase in the lower mantle, or
alternatively the difference in the amount of SiO2 in the lower and upper mantle.

The topography on the 410 and 660 km discontinuities can be obtained from high resolution seismic images, which
defines the mantle’s Transition Zone thickness [45]. The average thickness of this zone is 242 ± 9 km, with regions
in the western Pacific being (also in the Red Sea to the Aegean region) as much as 35 km thicker and up to 35 km
thinner in areas northwest of Hawaii and beneath Central Africa. Thinning and thickening of Transition Zone is mostly
due to topography on the 660 km discontinuity. There are regions with large amplitudes in boundary heights over narrow
horizontal scales, which correlate with subducting slabs. Hot regions (e.g., upwelling plume, like Hawaii) of the mantle are
correlated with anomalously thin transition zones and are also laterally narrow. Overall topography on the 410 km and
660 km discontinuities is generally correlated with temperature variations on small lateral scales (slabs and plumes).

There are two significant boundary layer structures in the Earth that are associated with the cooling of the Earth. At the
base of the mantle, the D00 layer is a structure that in part reflects the conductive thermal boundary between the hotter core
and cooler mantle. At the top of the mantle, the lithosphere is the mechanical plate that translates with mantle convection
and its outermost conductive cooling layer. The oceanic lithosphere, made of oceanic crust (8 ± 2 km) and its subjacent
lithospheric mantle (up to 80 km thick), forms at mid-ocean spreading centers where adiabatic decompression leads to
melting, crust production and basal accretion of residual mantle. Later and further afield from the spreading ridge, the base
of this lithosphere continues to accrete ambient mantle due to conductive cooling processes. The lithosphere beneath the
continents is made up on average of 34 km of crust underlain by lithospheric mantle that is estimated to reach down to
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of U in the Earth with ⇠1000 ng/g in the continental crust, ⇠100 ng/g in the oceanic crust and ⇠10 ng/g in the present-day
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The observed variation in seismic velocity in the mantle and core can be used to interpret its composition based on
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Mantle “plumes”

Richards et al. 1987

upwellings of hot material

www.physicstoday.org August 2011    Physics Today 37

Although proponents of the various modified plume
models focus on different aspects of the anomalous behavior,
several features of Yellowstone’s history are clear: Wide areas
from north-central Nevada to southeastern Washington be-
came volcanically active nearly simultaneously; the Steens
flood-basalt eruptions of southeast Oregon were nearly con-
temporaneous with the Columbia River flood basalts 250 km
away, but were initiated slightly earlier; the Columbia River
flood-basalt eruptions dominated the overall volcanic out-
put; and the southernmost volcanic centers, although not
comparable in eruptive volume, form a series of calderas lo-
cated where one would predict them—backtracking south-
west from the Yellowstone hot spot along the path taken by
North America’s plate (see figure 1b). 

The most common accounting is that a plume head ar-
rived at southeast Oregon and flattened underneath the
plate, a process that redistributed the volcanism over a broad
area that included the Columbia River basalts.3 Unfortu-
nately, that doesn’t explain why the Columbia River flood
basalts were so much larger, or why they and the western
Snake River Plain are so far off track; it also requires the
plume head to flatten at an improbably fast rate. One popular
idea is that the rising plume encountered the oceanic plate
subducting beneath the Pacific Northwest and was dragged
off course before finally breaking through beneath northeast
Oregon.4

Such proposals to explain the location and magnitude of

the Columbia River flood basalt require geoscientists to ei-
ther radically modify or abandon the model of a rising plume
head for at least this series of eruptions in history. Even so,
in a tectonically active planet where most events do not play
out in isolation, processes such as those just described are
possible, perhaps even expected. 

How to see a plume
If only we could peer into Earth like we can across the uni-
verse. In a fashion, we can—not with light waves but with
the elastic waves generated by earthquakes. The data that
have been most useful for imaging the various mantle struc-
tures at depths of hundreds to thousands of kilometers are
the travel-time delays of seismic waves captured by an array
of seismometers. The delay or advance of a wave at a seis-
mometer is a consequence of variations in its speed through
the planet. In the mantle, those variations are primarily re-
lated to changes in material properties caused by tempera-
ture and, where it’s present, molten rock. Mantle that is hotter
or partially melted is less stiff than cold, dry mantle and
transmits seismic waves more slowly. A wave that encounters
a mantle plume should thus have arrival times delayed by
the wave’s interaction with the seismically slow mantle.

Our ability to resolve underground features, however, 
is limited primarily by the uneven and often sparse distribu-
tion of signal-producing earthquakes and of seismometers
that record their seismic wave fields. The result is a highly 

Flood basalt Active volcanoH
ot-spot track

a

b

Figure 3. Flood basalts and hot-spot
tracks as plume heads and tails. 
(a) Earth’s distribution of continental
flood-basalt provinces, each formed
by thick lava flows from ancient erup-
tions covering thousands to millions
of square kilometers, and the series of
volcanic tracks—if still observable—
that lead to an active hot spot.
(Adapted from ref. 8.) (b) According
to the plume hypothesis, (i) a plume
of hot buoyant material detaches
from a thermal boundary layer in the
deep mantle; (ii) the plume rises more
rapidly in its conduit than the plume
head can push through viscous man-
tle, which inflates the head and ele-
vates Earth’s surface 1–2 km; (iii) de-
compression near the surface
partially melts the plume head, and
the resulting magma fractures the
plate and rises through it, eventually
erupting; and (iv) the flood basalt is
carried away as the plume tail contin-
ues to feed a series of volcanoes that
become the hot-spot track.

Humphreys & Schmandt 2011
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7.02.5.1 Fluid Dynamics of Multicomponent Flows
in Solution

7.02.5.1.1 Mass conservation in a multicomponent solution
If we want to study the evolution of major or trace element
concentration in the convecting mantle, we can consider the
mantle, instead of a homogeneous fluid, as a solution of
various components i in volumetric proportions fi (withP

ifi¼1) having the densities ri and velocities vi (and later,
thermal expansivities ai and heat capacities Cp

i . . .).
Using a mass balance very similar to what we had discussed

for a homogeneous fluid, we obtain a mass conservation equa-
tion of the form

@ firið Þ
@t

+—$ firivið Þ¼Gi [150]

where Gi is the rate of mass production of component i. This
rate of mass production is zero if no reactions produce the
component i.

In the fluid, the average density is

r¼
X

i

firi [151]

and various average velocities can be defined (weighted by the
mass, the volume, the number of moles, etc., of each compo-
nent i). In this section, we introduce the barycentric velocity, vb
(velocity of the center of mass), defined by

vb ¼
P

firivi
r

[152]

The average mass conservation can be obtained by sum-
ming the equations of component conservation [150],

@r
@t

+r$ rvbð Þ¼ 0 [153]

since the sum of the rates of mass production is zero:

X

i

Gi ¼ 0 [154]

In equation [150], instead of the various component
velocities vi, we can introduce the barycentric velocity vb and
the diffusive flux of the component i with respect to this
average flow,

@ firið Þ
@t

+—$ firivbð Þ¼%—$Ji +Gi [155]

where we define the diffusive flux, Ji, by

Ji ¼firi vi%vbð Þ [156]

By definition of the barycentric velocity eqn [152], the
diffusive flows sum to zero:

X

i

Ji ¼ 0 [157]

Figure 4 Convection patterns of a fluid heated from below at Rayleigh number 105, 106, 107, and 108. The temperature color bars range from 0 (top
boundary) to 1 (bottom boundary). The Boussinesq approximation was used (numerical simulations by F. Dubuffet). The increase in Rayleigh
number corresponds to a decrease of the boundary layer thicknesses and the width of plumes. Only in the case of the lowest Rayleigh number (top left)
is the convection stationary with cells of aspect ratio &

ffiffiffi
2

p
as predicted by marginal stability. For higher Rayleigh number, the patterns are highly

time-dependent.
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