

SUMMER INSTITUTE: USING PARTICLE PHYSICS TO UNDERSTAND AND IMAGE THE EARTH

11-21 July 2016 Gran Sasso Science Institute

Geodynamic picture of the Earth

Ondřej Šrámek Department of Geophysics Charles University in Prague <u>ondrej.sramek@gmail.com</u> <u>geo.mff.cuni.cz/~sramek</u>

Athanaseus Kircher (~1665):

Systema Ideale Pyrophylaciorum Subterraneorum, Mundus Subterraneus.

Oth order scaling

Oth order scaling

- Mass ... M ~ 6×10²⁴ kg
- Radius ... R ~ 6400 km
- \Rightarrow Average material density ... $\rho = 5600 \text{ kg/m}^3$
- Acceleration of gravity: g(r) = G m(r) / r²
 Assume uniform sphere: g(r) = 4/3 π G ρ r
 G(R) = 10 m/s²

Atmospheric pressure

• Pressure: $dP = \rho g dz = -\rho g dr$ $P(r) = P_0 - 2/3 \pi G \rho^2 r^2$ $P(R) = P_0 - 178 GPa$ (100 GPa = 1,000,000 × 0.1 MPa)

Earth: Cross Section

Layered structure

Atmosphere Nitrogen, Caygen, Carbon Dioxide

Crust Oxygen, Silicon, Aluminum, Iron, Calcium, Sodium, Polassium, Magnesium

Upper Mantle Pastic Magnesium, Kon, Aluminium Silcon, Oxygen 700 - 1302*C

Lower Mantle Clivins, Pyroxene and Feldepor 1800 - 2800°C

Outer Core Liquid from Suffur, Nickel and Oxygen 3200*C

Solid Iron & Nickel 4500*C

Notice: • non-uniform density: layering + effects of compressibility
• corresponding depth-dependence of g, P

Temperature in the Earth

Bukowinski 1999

Scientific drilling

Barents Sea

Kola Superdeep Borehole 12.262 km deep

compare with Earth radius ~6371 km

Study of (deep) Earth

Observations and sample collections possible at surface

Measurement and analysis of gravity field

Study of earthquakes and propagation of seismic waves

Experiments in minerals at high pressure and temperature

Numerical modeling of dynamic flow in the interior

Geochemical analyses of Earth and meteorite samples

First principles ("ab initio") calculations of material properties

Fluid mechanics experiments in laboratory

Detection of geoneutrinos, "particle geoscience"

Seismicity of the Earth

marc.fournier.free.free.fr/enseignement/world_seismicity_map.jpg

Clues toward plate tectonics hypothesis

- Apparent wander of geomagnetic pole
- Continental drift
- Mapping of ocean floor ~1950's
- Mid-oceanic ridges (MOR)
- Pattern of magnetic anomalies at MOR
- Depth of ocean floor

Apparent polar wander

Vine–Matthews–Morley hypothesis

<u>Wikimedia</u>

Sea floor age

Wessel & Müller 2015 in Treatise on Geophysics

Tectonic plates

GPS measured plate velocities

<u>Wikimedia</u>

Model of plate velocities

Looking deeper

Plate tectonics \Leftrightarrow Mantle convection

What powers the dynamics

- Earth's cooling
- Energy sources: long-lived radioactivity
 - ²³⁸U, ²³²Th, ⁴⁰K
 - how much radiogenic heat?
 - how spatially distributed?

Thermal convection

Mantle: solid-state convection

Most of the mantle is solid, i.e., below melting temperature

Ice behaves like solid at short time scale

...flows at much longer time scale

Viscosity in Pa swater10-3honey101ice1010Earth's mantle1021 Pa s→ at time scales > 103 years, fluid-like behavior

Equations for viscous fluid

Equations for incompressible viscous fluid

Mass
$$\nabla \cdot \mathbf{v} = 0$$

Momentum
$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla P + \eta \nabla^2 \mathbf{v} + \rho \mathbf{g}$$

Energy

$$\frac{\partial T}{\partial t} = -\mathbf{v} \cdot \nabla T + \kappa \nabla^2 T + \frac{Q}{\rho C_P}$$

Boussinesq approximation: Only consider density variations in the buoyancy term

$$\Delta \rho = -\rho \alpha \Delta T \qquad \text{(EOS)}$$

Also uniform viscosity, thermal conductivity

Modes of heat transfer Rayleigh number Onset of convection

Modes of heat transfer

Rayleigh number

Buoyancy F_b balanced by viscous drag F_d

 $F_d = 6\pi\eta v d$ Stokes' law

 $F_b = \Delta \rho g V = \frac{4}{3} \pi d^3 \rho \alpha \Delta T g$

Buoyancy

 $\Delta T \rightarrow \Delta \rho$

 $\rightarrow \quad v = \frac{2}{9} \frac{\rho \alpha \Delta T g d^2}{\eta}$

Viscous drag

$$\frac{\tau_c}{\tau_a} = \frac{vd}{\kappa} \approx \frac{\rho \alpha \Delta T g d^3}{\kappa \eta} \equiv Ra$$

- low Ra ... no convection
- high Ra ... convection

The Lord Rayleigh OM PRS

Born	12 November 1842
	Langford Grove, Maldon, Essex, England, UK
Died	30 June 1919 (aged 76)
	Terling Place, Witham, Essex,
	England, UK

Onset of convection

The diffusive solution is a valid solution to the equations of thermal convection.

$$\nabla \cdot \mathbf{v} = 0$$
$$-\nabla P + \nabla^2 \mathbf{v} - Ra(T - T_0)\mathbf{e}_z = 0$$
$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \nabla^2 T$$

(non-dimensional form)

Look for another solution in the form: $T = T_0(z) + \theta(t) \sin(\pi z) \sin(\pi x)$ $\rightarrow \quad \dot{\theta} = \left[\frac{k^2 R a}{(k^2 + \pi^2)^2} - (k^2 + \pi^2)\right] \theta$

Convection develops if perturbation grows in time (expression in brackets > 0):

$$Ra > Ra_s = \frac{(k^2 + \pi^2)^3}{k^2}$$

Minimum Ra_s at $k = \frac{\pi}{\sqrt{2}}$ or $\lambda = 2\sqrt{2}$, $Ra_c = \frac{27}{4}\pi^4 \approx 657$
Mantle Ra $\approx 10^8$

Critical Rayleigh number

Ricard 2015 in Treatise on Geophysics

Convection cells

Ricard 2015 in Treatise on Geophysics

Convection cell

Adiabatic temperature gradient

$$\frac{\mathrm{d}S(T,P)}{\swarrow} = \frac{\partial S}{\partial T} \bigg|_{P} \mathrm{d}T + \frac{\partial S}{\partial P} \bigg|_{T} \mathrm{d}P = 0$$
Entropy assume adiabatic

$$\left. \frac{\partial T}{\partial P} \right|_S = \frac{\alpha T}{\rho C_p}$$

or

Internal vs. basal heating

- thermal boundary layers
- upwellings, downwellings

HOT

(a)

(b)

(c)

convection cells

Geotherm: temperature vs. depth

Phase transitions

Partial melting in the shallow mantle

Hot spots: Hawaii

Mantle "plumes" upwellings of hot material

Richards et al. 1987

flood basalts hot spots

Deep mantle

Layering, chemical reservoirs in the mantle?

A) Shear-wave tomography

B) Thermochemical Piles

C) Plume Clusters

Chemical reservoir enriched in heat-producing elements?

Increasing the Rayleigh number

Numerical modeling of mantle convection

Thermal convection: hot material rises cold material sinks

Solving equations of conservation laws numerically

from Hana Čížková