Plastic and Liquid Scintillators

In practice use ...

solution of organic scintillators
[solved in plastic or liquid]
+ large concentration of primary fluor
+ smaller concentration of secondary fluor
+ ...

Scintillator requirements:

Solvable in base material

- High fluorescence yield
- Absorption spectrum must overlap with emission spectrum of base material

Plastic and Liquid Scintillators

Plastic and Liquid Scintillators

Some widely used solvents and solutes

	solvent	secondary fluor	tertiary fluor
Liquid scintillators	Benzene Toluene Xylene	p-terphenyl DPO PBD	POPOP BBO BPO
Plastic scintillators	Polyvinylbenzene Polyvinyltoluene Polystyrene	p-terphenyl DPO PBD	POPOP TBP BBO DPS

p-Terphenyl

POPOP

Wavelength Shifting

Principle:

Absorption of primary scintillation light Re-emission at longer wavelength

Adapts light to spectral sensitivity of photosensor

Requirement:

Good transparency for emitted light

Schematics of wavelength shifting principle

Organic Scintillators – Properties

Scintillat or materia I	Dens ity [g/cm ³]	Refractiv e Index	Wavelength [nm] for max. emission	Decay time constant [ns]	Photons/MeV
Naphtalene	1.15	1.58	348	11	4 · 10 ³
Antracene	1.25	1.59	448	30	4·10 ⁴
p-Terphenyl	1.23	1.65	391	6-12	1.2.104
NE102*	1.03	1.58	425	2.5	2.5·10 ⁴
NE104*	1.03	1.58	405	1.8	2.4·10 ⁴
NE110*	1.03	1.58	437	3.3	2.4·10 ⁴
NE111*	1.03	1.58	370	1.7	2.3·10 ⁴
BC400**	1.03	1.58	423	2.4	2.5·10 ²
BC428**	1.03	1.58	480	12.5	2.2·10 ⁴
BC443**	1.05	1.58	425	2.2	2.4·10 ⁴

* Nuclear Enterprises, U.K.

** Bicron Corporation, USA

Organic Scintillators – Properties

Organic Scintillators – Properties

$$\frac{dL}{dx} = L_0 \frac{dE}{dx}$$

Quenching: non-linear response due to saturation of available states

Birk's law:

$$\frac{dL}{dx} = L_0 \frac{\frac{dE}{dx}}{1 + kB\frac{dE}{dx}}$$

[kB needs to be determined experimentally]

Also other parameterizations ...

Response different for different particle types ...

Scintillators – Comparison

Inorganic Scintillators

Advantages	high light yield [typical; ε _{sc} ≈ 0.13] high density [e.g. PBWO₄: 8.3 g/cm³] good energy resolution	
Disadvantages	complicated crystal growth large temperature dependence	Expensive

Organic Scintillators

Advantages	very fast easily shaped small temperature dependence pulse shape discrimination possible	
Disadvantages	lower light yield [typical; $\epsilon_{sc} \approx 0.03$] radiation damage	Cheap

Scintillation Counters – Setup

Scintillator light to be guided to photosensor

→ Light guide [Plexiglas; optical fibers]

> Light transfer by total internal reflection [maybe combined with wavelength shifting]

Liouville's Theorem:

Complete light transfer impossible as $\Delta x \ \Delta \theta = \text{const.}$ [limits acceptance angle]

Use adiabatic light guide like 'fish tail';

➤ appreciable energy loss

Scintillation Counters – Setup

Purpose : Convert light into a detectable electronic signal Principle : Use photo-electric effect to convert photons to photo-electrons (p.e.)

Requirement :

High Photon Detection Efficiency (PDE) or Quantum Efficiency; Q.E. = $N_{p.e.}/N_{photons}$

Available devices [Examples]:

Photomultipliers [PMT] Micro Channel Plates [MCP] Photo Diodes [PD]

HybridPhoto Diodes [HPD] Visible Light Photon Counters [VLPC] Silicon Photomultipliers [SiPM]

Photomultipliers

Principle:

Electron emission from photo cathode Secondary emission from dynodes; dynode gain: 3-50 [f(E)]

Typical PMT Gain: > 10⁶ [PMT can see single photons ...]

Photomultipliers – Photocathode

Bialkali: SbRbCs; SbK₂Cs

Electron generation via ionization Propagation through cathode Escape of electron into vacuum

Q.E. ≈ 10-30% [need specifically developed alloys]

Photomultipliers – Dynode Chain

Multiplication process:

Electrons accelerated toward dynode Further electrons produced \rightarrow avalanche

Secondary emission coefficient: $\delta = \#(e^{-} \text{produced})/\#(e^{-} \text{incoming})$

Typical:
$$\delta = 2 - 10$$

 $n = 8 - 15$ $\Rightarrow G = \delta^{n} = 10^{6} - 10^{8}$

Gain fluctuation: $\delta = kU_D$; $G = a_0(kU_D)^n$ dG/G = n dU_D/U_D = ndU_B/U_B

Photomultipliers – Dynode Chain

Photomultipliers – Energy Resolution

Energy resolution influenced by:

Linearity of PMT: at high dynode current possibly saturation by space charge effects; $I_A \propto n_Y$ for 3 orders of magnitude possible ...

light collection efficiency

Photoelectron statistics: given by poisson statistics.

$$P_n(n_e) = \frac{n_e^n \ e^{-n_e}}{n!} \quad \text{with } n_e \text{ given} \\ \text{by dE/dx ...} \\ \sigma_n/\langle n \rangle = 1/\sqrt{n_e} \quad \text{with } n_e \text{ given} \\ \sigma_n/\langle n \rangle = 0.2; \text{ Q.E. =0.25} \quad n_e = 20000 \\ \sigma_n/\langle n \rangle = 0.7\%$$

Secondary electron fluctuations:

$$P_n(\delta) = \frac{\delta^n \ e^{-\delta}}{n!} \qquad \text{with dynode gain } \delta; \qquad \sigma_n/\langle n \rangle = 1/\sqrt{\delta} \qquad \text{with dynodes ...} \qquad \sigma_n/\langle n \rangle = \frac{\delta^n \ e^{-\delta}}{n!} \qquad \sigma_n/\langle n \rangle = \frac{1}{\sqrt{\delta}} = \frac{1}{\delta} + \dots + \frac{1}{\delta^N} \approx \frac{1}{\delta - 1} \qquad \dots \text{ important for single photon detection}$$

Photomultipliers – Energy Resolution

Micro Channel Plate

But: limited life time/rate capability

Silicon Photomultipliers

Principle:

Pixelized photo diodes operated in Geiger Mode

Single pixel works as a binary device

Energy = #photons seen by summing over all pixels

Features:

Granularity	:	10 ³ pixels/mm ²
Gain	:	10 ⁶
Bias Voltage	:	< 100 V
Efficiency	:	ca. 30 %

Works at room temperature! Insensitive to magnetic fields

Silicon Photomultipliers

HAMAMATSU MPPC 400Pixels

One of the first SiPM Pulsar, Moscow

Silicon Photomultipliers

Scintillation Counters – Applications

Time of flight (ToF) counters Energy measurement (calorimeters) Hodoscopes; fibre trackers Trigger systems

> ATLAS Minimum Bias Trigger Scintillators

Particle track in scintillating fibre hodoscope 00000000

H1 – Spaghetti Calorimeter

Scintillator : BICRON BCF-12 Photosensor : Photomultipliers

CMS – Crystal Calorimeter (ECAL)

CMS – Crystal Calorimeter (ECAL)

Scintillator : PBW0₄ [Lead Tungsten] Photosensor : APDs [Avalanche Photodiodes]

> Number of crystals: ~ 70000 Light output: 4.5 photons/MeV

ATLAS – Tile Calorimeter

CALICE – Analogue HCAL

1m³-Prototype 38 layers

Sandwich structure:

- Scintillator Tiles+WLS+SiPMs (.5 cm)
- Stainless steel absorber (1.6 cm)

2006/2007 CERN Testbeam [2008/09, Fermilab]

Scintillator : Plastic Photosensor : SiPMs

CALICE – Scintillator ECAL

Some examples of liquid scintillator based detectors

Borexino (low energy solar neutrino detector and geo-neutrino)

KamLAND (reactor neutrino detector and geo-neutrino)

Double Chooz (reactor neutrino detector)

Daya Bay (reactor neutrino detector)

Reno (reactor neutrino detector)

Planned: SNO+ and JUNO

PMT's on the sphere surface

Vessel before inflation (viewed by CCD cameras)

Vessel after inflation (viewed by CCD cameras)

Detector fully filled on May 15^{th,} 2007: DAQ starts

<u>LAKN –</u> <u>Low Argon and</u> <u>Krypton Nitrogen</u>

Ultra-pure water

March 2007

End October 2006

Liquid scintillator

Ultra-pure water

May 2007

Photos taken with one of 7 CCD cameras placed inside the detector

Solid State Detectors (SSD)

Ionization chamber medium could be gas, liquid, or solid

Gas \Rightarrow electron and ion pairs; Semiconductor \Rightarrow electron and hole pairs

	Gas	Solid
Density	Low	High
Atomic number (Z)	Low	Moderate (Z=14)
lonization Energy (ε _ι)	Moderate (≈ 30 eV)	Low (≈3.6 eV)
Signal Speed	Moderate (10ns-10 μs)	Fast (<20 ns)

Solid State Detectors

Energy (E) to create e-h pairs 10 times smaller than gas ionization \Rightarrow increase charge \Rightarrow good E resolution

$$\frac{\Delta E}{E} \propto \frac{1}{\sqrt{N}} \propto \frac{1}{\sqrt{E/\varepsilon_I}} \propto \sqrt{\varepsilon_I}$$

Greater density

- Reduced range of secondary electron \Rightarrow excellent spatial resolution
- Average E_{loss} ≈390eV/ μm ≈108 e-h/ μm (charge collected is a function of thickness D but no multiplication)
- To minimize multiple scattering D should be small, 300 μ m \approx 32,000 e-h pairs yields good S/N

Principle of Operation

- Goal: precise charged particle position measurement
- Use ionization signal (dE/dx) from charged particle passage

- In a semiconductor, ionization produces electron hole (e-h) pairs
- Use an electric field to drift the e and h to oppositely charged electrodes
- Problem: in pure intrinsic (undoped) silicon, there are more free charge carriers than those produced by a charged particle.
 - Ex.: in this volume have 4.5x10⁸ free charge carriers and only 3.2x10⁴ produced by MIP particle
- Problem: electron-hole pairs quickly re-combine
- Solution: Deplete the free charge carriers and collect e (or h) quickly by exploiting the properties of a p-n junction (diode)

Semiconductor: Band Gap

When isolated atoms are brought together to form a lattice, the discrete atomic states shift to form energy bands

If the gap is large, the solid is an insulator. If there is no gap, it is a conductor. A semiconductor results when the gap is small. Ge 0.7 eV GaAs 1.4 eV Si 1.1 eV Diamond 4.5 eV

The PN Junction

- Space Charge Region: When n and p type silicon are brought together \Rightarrow gradient of electron and hole densities \Rightarrow migration of majority carriers across the junction which leaves a region of net charge of opposite sign on each side, called the space-charge region or depletion region (depleted of free charge carriers). The electric field in the region prevents further migration of carriers \Rightarrow potential difference $\Phi=V_{bi}$ (built in potential).
- Junction: Interface where the p- and n-type materials meet.
- $N_A \& N_D$: Negative and positive doping (n/cm³), usually ≈ 10¹⁵-10²⁰/cm³.

77

The Biased PN Junction

The pn junction is considered biased when an external voltage is applied. There are two types of biasing: Forward bias and Reverse bias. <u>biased p-n junction</u>

Charge collection

Electron and hole pairs created in the depletion region move under the E field

$$v_{e,h}(x) = \mu_{e,h} E(x)$$

 $\mu_e = 1500 cm^2 / Vs, \mu_h = 450 cm^2 / Vs$

- The time required for a carrier to traverse the sensitive volume is the collection time.
- The collection time can be reduced by over-biasing the sensor

$$t(x) = \frac{D^2}{2\mu_p V_d} \ln \left(\frac{V_{bias} - V_{fd}}{V_{bias} - V_{fd} + 2V_{fd} \left(1 - \frac{x}{D}\right)} \right)$$

Historical developments

> NA11 at CERN

First use of a position-sensitive silicon detector in HEP experiment

- Measurement of charm-quark lifetime
- 1200 diode strips on 24 x 36mm² active area
- 250-500 µm thick bulk material
- 4.5 µm resolution

Historical developments

LEP and SLAC

- ASIC's at end of ladders
- Minimise the mass inside tracking volume
- Minimise the mass between interaction point and detectors
- Minimise the distance between interaction point and the detectors
- > Enabled heavy flavour physics i.e. short lived particles

- 2 silicon layers, 40cm long, inner radius 6.3cm, outer radius 11cm
- 300µm Silicon wafers giving thickness of only 0.015X₀
- S/N rΦ = 28:1; z = 17:1
- $\sigma_{r\phi}$ = 12 μ m; σ_z = 14 μ m

Currently at the LHC

Elemental Semiconductor

> Germanium:

- Used in nuclear physics
- Needs cooling due to small band gap of 0.66 eV (usually done with liquid nitrogen at 77 K)

> Silicon:

- Can be operated at room temperature
- Synergies with micro electronics industry
- Standard material for vertex and tracking detectors in high energy physics

> Diamond (CVD or single crystal):

- Allotrope of carbon
- Large band gap (requires no depletion zone)
- very radiation hard
- Disadvantages: low signal and high cost

Why Silicon

- Semiconductor with moderate bandgap (1.12eV)
- Energy to create e/h pair (signal quanta)= 3.6eV
 - (c.f Argon gas = 15eV)
 - High carrier yield
 - Better energy resolution and high signal
 - ⇒no gain stage required
- > High density and atomic number
 - Higher specific energy loss
 - ⇒Thinner detectors
 - ⇒Reduced range of secondary particles
 - \Rightarrow better spatial resolution
- > High carrier mobility \Rightarrow Fast!
 - Less than 30ns to collect entire signal
- > Large experience in industry with micro-chip technology
- > High intrinsic radiation hardness

Example – CMS Tracker

Inner Inner Outer Discs Pixel Barrel (TIB) Barrel (TID) End Cap (TEC) 5.4m Pixel

Largest silicon tracker

- Micro Strip Tracker:
- ~ 214 m² of silicon strip sensors, 11.4 million strips
- Pixel:
- Inner 3 layers: silicon pixels (~ 1m²)
- 66 million pixels (100x150µm)
- Precision: $\sigma(r\phi) \sim \sigma(z) \sim 15 \mu m$
- Most challenging operating environments (LHC)

Summary

- More than 100 years of particle physics & discoveries possible thanks to a large variety of instruments and techniques
- Imaging devices are unbeatable in precision but slow & cannot be triggered
- Logic devices still largely in use (Geiger counters, scintillators, Cherenkov detectors)
- Todays particle detectors merge all possible techniques to create "electronic images" of particles
- In order to detect a particle, it has to interact and deposit energy
 → all means are good = use all types of interaction