Hunting for geoneutrinos

Livia Ludhova

RWTH Aachen and IKP-2 Forschungzentrum Jülich Germany

Outlook

- 1. Geoneutrinos: what they are and the current measurements in a nutshell
- 2. Why to measure geoneutrinos?
- 3. What are neutrinos?
- 4. How to detect neutrinos?
- 5. Borexino and KamLAND geoneutrino analysis
- 6. Borexino and KamLAND experiments
- 7. Future perspective

Geoneutrinos: electron antineutrinos from the decays of long lived radioactive isotopes naturally present in the Earth (²³⁸U and ²³²Th chains and ⁴⁰K)

Geoneutrinos: electron antineutrinos

from the decays of long lived radioactive isotopes naturally present in the Earth (²³⁸U and ²³²Th chains and ⁴⁰K)

²³⁸U (99.2739% of natural U) \rightarrow ²⁰⁶Pb + 8 α + 8 e^{-} + 6 anti-neutrinos + 51.7 MeV

²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 e^- + 4 anti-neutrinos + 42.8 MeV

²³⁵U (0.7205% of natural U) \rightarrow ²⁰⁷Pb + 7 α + 4 e^{-} + 4 anti-neutrinos + 46.4 MeV

⁴⁰K (0.012% of natural K) \rightarrow ⁴⁰Ca + e⁻ + 1 anti-neutrino + 1.32 MeV (89.3 %)

 ${}^{40}\text{K} + e^- \rightarrow {}^{40}\text{Ar} + 1 \text{ neutrino} + 1.505 \text{ MeV} (10.7 \%)$

Geoneutrinos: electron antineutrinos

from the decays of long lived radioactive isotopes naturally present in the Earth (²³⁸U and ²³²Th chains and ⁴⁰K)

²³⁸U (99.2739% of natural U) \rightarrow ²⁰⁶Pb + 8 α + 8 e^{-} + 6 anti-neutrinos + 51.7 MeV

²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 e^- + 4 anti-neutrinos + 42.8 MeV

²³⁵U (0.7205% of natural U) \rightarrow ²⁰⁷Pb + 7 α + 4 e^{-} + 4 anti-neutrinos + 46.4 MeV

⁴⁰K (0.012% of natural K) \rightarrow ⁴⁰Ca + e⁻ + 1 anti-neutrino + 1.32 MeV (89.3 %)

 ${}^{40}\text{K} + e^- \rightarrow {}^{40}\text{Ar} + 1 \text{ neutrino} + 1.505 \text{ MeV} (10.7 \%)$

the only direct probe of the deep Earth <u>released heat and anti-neutrinos flux in a well fixed ratio</u> measure geoneutrino flux = (in principle) = get radiogenic heat in practice (as always) more complicated.....

Geoneutrinos: electron antineutrinos

from the decays of long lived radioactive isotopes naturally present in the Earth (²³⁸U and ²³²Th chains and ⁴⁰K)

²³⁸U (99.2739% of natural U) \rightarrow ²⁰⁶Pb + 8 α + 8 e^{-} + 6 anti-neutrinos + 51.7 MeV

²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 e^- + 4 anti-neutrinos + 42.8 MeV

²³⁵U (0.7205% of natural U) \rightarrow ²⁰⁷Pb + 7 α + 4 e^{-} + 4 anti-neutrinos + 46.4 MeV

⁴⁰K (0.012% of natural K) \rightarrow ⁴⁰Ca + *e*⁻ + 1 anti-neutrino + 1.32 MeV (89.3 %)

 ${}^{40}\text{K} + e^- \rightarrow {}^{40}\text{Ar} + 1 \text{ neutrino} + 1.505 \text{ MeV} (10.7 \%)$

the only direct probe of the deep Earth

released heat and anti-neutrinos flux in a well fixed ratio

measure geoneutrino flux = (in principle) = get radiogenic heat

in practice (as always) more complicated.....

Earth shines in antineutrinos: flux ~ 10⁶ cm⁻² s⁻¹ leaving freely and instantaneously the Earth interior (to compare: solar neutrino (NOT antineutrino!) flux ~ 10¹⁰ cm⁻² s⁻¹)

Decay	$T_{1/2}$	E_{\max}	Q	${\cal E}_{ar u}$	$arepsilon_H$
	$[10^9 \mathrm{~yr}]$	[MeV]	[MeV]	$[\mathrm{kg}^{-1}\mathrm{s}^{-1}]$	[W/kg]
$^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8 \ ^{4}\text{He} + 6e + 6\bar{\nu}$	4.47	3.26	51.7	7.46×10^7	0.95×10^{-4}
232 Th $\rightarrow ^{208}$ Pb + 6 4 He + 4 e + 4 $\bar{\nu}$	14.0	2.25	42.7	1.62×10^7	0.27×10^{-4}
$^{40}\text{K} \to {}^{40}\text{Ca} + e + \bar{\nu} \ (89\%)$	1.28	1.311	1.311	2.32×10^8	0.22×10^{-4}

•Radiogenic heat is related to the neutrino flux:

 $H_R = 9.5 M(U) + 2.7 M(Th) + 3.6 M(^{40}K)$ $L_v = 7.4 M(U) + 1.6 M(Th) + 27 M(^{40}K)$

- only 2 running experiments have measured geoneutrinos;
- liquid scintillator detectors;
- •(Anti-)neutrinos have low interaction rates, therefore:
 - Large volume detectors needed;
 - •High radiopurity of construction materials;
 - •Underground labs to shield cosmic radiations;

KamLand in Kamioka, Japan Border bewteen OCEANIC AND CONTINENTAL CRUST

- build to detect reactor anti-v;
- 1000 tons;

•S(reactors)/S(geo) ~ 6.7 (2010)

•After the Fukushima disaster (March 2011) many reactors OFF!

• data since 2002;

•2700 m water equivalent shielding;

Borexino in Gran Sasso, Italy CONTINENTAL CRUST

 originally build to measure neutrinos from the Sun – extreme radiopurity needed and achieved;

• 280 tons;

•S(reactors)/S(geo) ~ 0.3 !!! (2010)

- DAQ started in 2007;
- 3600 m.w.e. shielding;

Latest geoneutrino results

Why to study geoneutrínos?

http://www.dstu.univ-montp2.fr/PERSO/bokelmann/convection.gif

Inner Core - SOLID

- about the size of the Moon;
- Fe Ni alloy;
- solid (due to high pressure of
- ~ 330 GPa);
- temperature ~ 5700 K;

Outer Core - LIQUID

- 2260 km thick;
- Fe Ni alloy +
 - + 10% light elements (S, O?);
- liquid;
- •temperature ~ 4100 5800 K;
- geodynamo:

motion of conductive liquid within the Sun's magnetic field;

D'' layer: mantle –core transition

- ~200 km thick;
- seismic discontinuity;
- many different ideas around; (mineral recrystallisation, material brought here from the subduction zones...)

Lower mantle (mesosphere)

- rocks: high Mg/Fe ratio, less Si + Al than in the crust;
- T: 600 3700 K;
- high pressure: solid, but viscose, no brittle faulting;
- "plastic" on long time scales:

Transition zone (400 -650 km)

seismic discontinuity;

- mineral recrystallisation;
- •: role of the latent heat?;
- partial melting: the source of midocean ridges basalts;

Earth structure Upper mantle

• composition: rock type peridotite with minerals olivine and pyroxen;

 includes highly viscose astenosphere on which are floating litospheric tectonic plates (**lithosphere** = more rigid upper mantle + crust);

Crust: the uppermost part

OCEANIC CRUST:

- created at mid-ocean ridges;
- ~ 10 km thick;

<u>CONTINENTAL CRUST</u>:

- the most differentiated;
- 30 70 km thick;
- igneous, metamorphic, and sedimentary rocks;
- obduction and orogenesis;

Earth's profile in time

http://www.ess.sci.osaka-u.ac.jp/english/3_research/groups/g05kondo.html

Where are concentrated U, Th, and K?

• The main long-lived radioactive elements: ^{238/235}U, ²³²Th, and ⁴⁰K

U, Th, K are refractory lithophile elements (RLE)

- Volatile /Refractory: Low/High condensation temperature
- Lithophile like to be with silicates: during partial melting they tend to stay in the liquid part. The residuum is depleted. Accumulated in the continental crust. Less in the oceanic crust. Mantle even smaller concentrations. Nothing in core.

concentration for ²³⁸ U		
(Mantovani <i>et al</i> . 2004)		
upper continental crust:	2.5	ppm
middle continental crust:	1.6	ppm
lower continental crust:	0.63	ppm
oceanic <mark>crust</mark> :	0.1	ppm
upper mantle:	6.5	ppb
core	NOTH	HING

?⁴⁰K in the core???

How do we get information about the Earth interior ?

P – primary, longitudinal wavesS – secondary, transverse/shear waves

Discontinuities in the waves propagation and the density profile but no info about the chemical composition of the Earth

Geochemistry

1) Direct rock samples

* surface and bore-holes (max. 12 km);

* mantle rocks brought up by tectonics and **vulcanism**; BUT: <u>POSSIBLE ALTERATION DURING THE TRANSPOR</u>T

2) Geochemical models:

composition of direct rock samples + C1 carbonaceous chondrites meteorites + Sun's photosphere;

Bulk Silicate Earth (BSE) models (several!): medium composition

of the "re-mixed" crust + mantle,

i.e., **primordial mantle** before the crust differentiation and after the Fe-Ni core separation;

In C1 carbonaceous chondrites

From Sramek @ Neutrino Geoscience 2013

thickness.

-60

0

60

120

Surface heat flux

- Conductive heat flow from bore-hole temperature gradient;
- Total surface heat flux:
 31 ± 1 TW (Hofmeister&Criss 2005)
 46 ± 3 TW (Jaupart et all 2007)
 47 ± 2 TW (Davis&Davies 2010)
 (same data, different analysis)

SYSTEMATIC ERRORS

Different assumptions concerning the role of fluids in the zones of mid ocean ridges.

Sources of the Earth's heat

- Total heat flow ("measured"): latest results: 47+2 TW
- Radiogenic heat = from decays of long-lived radioactive elements (U,Th chains + ⁴⁰K)
 - A) C1 carbonaceous chondrites : 17-21 TW from which

~9 TW from the crust and 0 from the core (the rest is in the mantle);

- B) Enstatic-chondrites models: (Javoy 2010): only 11 TW!!!
- C) Geodynamical models: >30 TW!!!
- Other heat sources (possible deficit up to 47-11 = 36 TW!)
 - Residual heat: gravitational contraction and extraterrestrial impacts in the past;
 - ⁴⁰K in the core;

IMPORTANT MARGINS FOR ALL DIFFERENT MODELS OF THE EARTH STRUCTUE

Geoneutrinos: antineutrinos from the decay of ²³⁸U, ²³²Th, and ⁴⁰K in the Earth

Expected geoneutrino signal

- LOC: Local crust: about 50% of the expected geoneutrino signal comes from the crust within 500-800 km around the detector, thus local geology has to be known;
- ROC: Rest of the crust: further crust is divided in 3D voxels, volumes for upper, middle, lower crust and sediments are estimated and a mean chemical composition is attributed to these volumes (Huang et al. 2013);
- Mantle = BSE (LOC + ROC): this is the real unknown, different BSE models are considered and the respective U + Th mass is distributed either homogeneously (maximal signal) or it is concentrated near to the core-mantle boundary (minimal signal);

-				
	Site	Mantovani et al. [91]	Dye [88]	Huang et al. [28]
Borexino	Kamioka	$24.7^{+4.3}_{-10.3}$	23.1 ± 5.5	$20.6^{+4.0}_{-3.5}$
KamLAND	Gran Sasso	$29.6^{+5.1}_{-12.4}$	28.9 ± 6.9	29.0 ^{+6.0}
SNO+	Sudbury	$38.5^{+6.7}_{-16.1}$	34.9 ± 8.4	$34.0^{+6.3}_{-5.7}$
HanoHano	Hawaii	$3.3^{+0.6}_{-1.4}$	3.2 ± 0.6	$2.6^{+0.5}_{-0.5}$

1 TNU = 1 event / 10³² target protons / year Cca 1 event / 1 kton / 1 year with 100% detection efficiency

O. Šrámek et al. / Earth and Planetary Science Letters 361 (2013)

Seismic tomography image of present-day mantle

Is the mantle chemically homogenous? We do not know!!

Mantle geo- ν signal in the TOMO model

O. Šrámek et al. / Earth and Planetary Science Letters 361 (2013)

Geoneutrinos: why to study them

Possible answers to the questions

– Main goal:

What is the radiogenic contribution to the terrestrial total surface heat flux

- Are there any other heat sources or not?
- What is the distribution of the long-lived radioactive elements within the Earth?
 - how much of them is in the crust and in the mantle;
 - is their distribution in the mantle homogeneous or not;
 - are they present in the core;
 - is there a geo-reactor (Herndon 2001);
- Are the BSE models compatible with geoneutrino data?
- Discrimination among different BSE models;
- What is the bulk Th/U ratio;
- insights to the processes of the Earth'formation...

Geoneutrinos: why to study them

Possible answers to the questions

– Main goal:

What is the radiogenic contribution to the terrestrial total surface heat flux

- All these info would give
 - significant margins to many geochemical and geophysical models and insights into the models of the Earth' s formation.

hin the

- Are the BSE models compatible with geoneutrino data?
- Discrimination among different BSE models;
- What is the bulk Th/U ratio;
- insights to the processes of the Earth'formation...

What are neutrínos?

Neutrino basics....

- No electric charge
 = no elmag interactions;
- No color
 no strong interactions;
- Only weak interactions
 = very small cross sections;

Elementary particles of the SM

- Originally, in the SM neutrinos have exactly zero mass, all neutrinos are lefthanded and all antineutrinos are right handed;
- Experimental evidences for **neutrino oscillations**: **non-zero mass** required!
- Non-zero mass requires at least a minimal extension of the SM;
- Dirac or Majorana particles?
- If Majorana, then lepton-flavor violation by 2 and $0v-\beta\beta$ –decay possible: a big experimental effort is ongoing!

Neutrino mixing

 $\alpha = e, \mu, \tau$ Flavour eigenstates **INTERACTIONS**

U: Pontecorvo – Maki – Nagawa – Sakata matrix

- **3 mixing angles** θ_{ii} : measured (in which quadrant is θ_{23} ?); •
- Non-zero θ_{13} confirmed only in 2012 by Daya Bay in China! •
- **Majorana phases** $\alpha 1$, $\alpha 2$ and **CP-violating phase** δ unknown;
Mass hierarchy

Neutrino Oscillations

v production

Neutrino Oscillations

v production

v propagation

v production

v propagation

v detection

as flavor-eigenstate: as coherent superposition e.g. β⁺-decay Superposition of mass of mass-eigenstates. · eigenstates has changed e^+ because of phase factors. р W^+ P=100% P = 20% : v_e 67% n v_e, 40% : v_u 30% No Δ_{21} 40% : v_T 3% Δ_{32} Weak interaction Different masses create a creates neutrino in *Finite probability to detect* phase difference over time. flavor-eigenstate. a different **neutrino-flavor**!

Effect of neutrino oscillations

$$P_{ee} = P(\overline{\nu}_e \to \overline{\nu}_e) = \cos^4 \theta_{13} \left(1 - \sin^2 2\theta_{12} \sin^2 \left(\frac{\delta m^2 L}{4E} \right) \right) + \sin^4 \theta_{13}$$

3 MeV antineutrino ..

Oscillation length of ~100 km

for geoneutrinos we can use average survival probability of 0.551 + 0.015 (Fiorentini et al 2012), but for reactor antineutrinos not!

Neutrino sources

So how to detect geoneutrínos?

Scintillation based detection

Scintillator cocktail for the JUNO experiment (picture Uni Mainz)

Detection of ionizing radiation through the scintillation light induced in special organic or inorganic materials = scintillators

Addition of the solutue/fluor serves as:

- ✓ efficient non-radiative tranfer of excitation energy from the solvent to fluor
- ✓ wavelength shifter to longer wavelengths to match quantum efficiency of the phototubes and decrease self-absorption
- ✓ Fast decay times

Scintillation based detection

Absorption higher frequencies and smaller wavelengths than emission

Fast fluorescence has higher frequencies and smaller wavelengths than emission than slower phosphorescence

Molecular states in aromatic carbohydrates π bonds

Stokes shift

an important, general concept to keep in mind for all scintillators

- emitted photons are at longer wavelengths (smaller energies) than the energy gap of the excitation
- the processes that produce this "Stokes shift" are different in different scintillating materials
- this allows the scintillation light to propagate through the material
 - emitted photons can't be self-absorbed by exciting the material again

Scintillator cocktail in Borexino

Pseudocumene (PC) as a solvent

1,2,4-trimethylbenzene

Called fluor / solute PPO as a solute (~1.5 g/l) 2,5-diphenyloxazol

Aromatic carbohydrates: "the cloud" of 6 p_z electrons from double covalent bounds and their excited molecular states play an important role in the generation of scintillation light

Scintillator cocktail in KamlAND

20% Pseudocumene (PC)

1,2,4-trimethylbensene

1.52 g/l PPO / solute 2,5-diphenyloxazol

Non-aromatic carbohydrates:

for higher H/C ratio (neutron capture for antineutrino detection), better transparency, safety, and stability but some reduction of the light output

LAB solvent

LAB

linear-alkylbenzene

- Developed by SNO+
- Used in Daya Bay
- Planned for JUNO

Compared to pseudocumene:

- Non toxic
- High flash point
- Cheap
- Worse particle discrimination
- Compatible with acrylic
- Excellent transparency

Quenching

- quenching is an external process that de-excites the scintillator without fluorescence
- Impurity quenching: Oxygen!
- Ionisation quenching: high ionization density quenches the excited π-electrons

Three important consequences:

1) non-linearity in energy response

2) heavy particles with higher dE/dx (e.g. α) produce less light for the same energy deposit, (by a factor of >10 for α in liquids)
3) the scintillation pulse shape (fast/slow components) is different

Need to calibrate the detectors with radioactive sources!

Scintillation based detection

Important characteristics:

- Fast pulses (short decay time of the scintillation light production)
- High scintillation efficiency and high light yield
- High transparency
- Good energy and position resolution
- Low energy threshold
- No directionality in current detectors
- Quenching: non-linearities between energy deposit and produced light
- Pulse shape discrimination (alpha/beta, positron/electron)
 - ✓ elastic scattering: T ~200 keV for neutrino
 - ✓ IBD: T = 1.8 keV for antineutrino
 - ✓ <u>real- time technique: E, spectrum!</u>

We learned now that charged partícles can be detected in liquid scintillators

But neutrínos do not have any charge

So how they are detected there???

Neutrinos detected through the elastic scattering: singles

@ 1-2 MeV for electron flavour: ~10⁻⁴⁴ cm²

for μ,τ flavours about 5-6 x smaller cross section

Eenergy spectrum of a scattered electron for 10 MeV (anti)-neutrino

Curtsey A. Derbin

$$T_{e}^{max} = 2E_{\nu}^{2}/(m_{e} + 2E_{\nu})$$

T_e^{max} (for 10 MeV neutrino) = 9.75 MeV

If you would have the same flux of

Electron neutrinos Electron antineutrinos Mu/tau neutrinos Mu/tau antineurinos

You would measure these spectra trhough the scaterring channels

Borexino singles spectrum

Borexino spectrum: different components extracted by a spectral fit

Electron antineutrinos detected through IBD

(Inverse Beta Decay interaction)

Charge current, only anti- v_e

Energy threshold = 1.8 MeV

@ few MeV for electron flavour: ~10⁻⁴² cm² (~100 x more than scattering)

Inverse Beta Decay interaction

$$v + p \rightarrow n + e^+$$

Scintillator
 v Prompt signal
 e^+ Delayed
signal
 $\overline{v_e}$ 2.2MeV

Only in liquid scintillators

"prompt signal"

e⁺: energy loss T_{e+} + annihilation (2 x 0.511 MeV) $E_{prompt} = E_{geonu} - 0.784 \text{ MeV}$

"delayed signal" neutron thermalisation & capture on protons, emission of **2.2 MeV** γ

Cross section of gamma rays interactions

Electron antineutrinos detected in Borexino through IBD

Only 77 candidates since 2008!!

Neutrino detection is special

Cosmogenic background -> underground laboratories

Small neutrino interaction rates \rightarrow shielding against cosmic rays

Muon flux in undeground laboratories

Geoneutrino energy spectrum

IBD in a nutshell

antineutrino + proton \rightarrow positron + neutron

E_{prompt} = E(antineutrino) – 0.784 MEV

E_{delayed} = 2.2 MeV gamma

Δ time ΔR

- Charged particles produce scintillation light;
- Gamma rays from the positron annihilation and from the neutron capture are neutral particles but in the scintillator they interact mostly via Compton scattering producing electrons = charged particles;
- Scintillation light is detected by an array of phototubes (PMTs) converting optical signal to electrical signal;
- Number of hit PMTs = function (energy deposit) -> Eprompt, Edelayed
- Hit PMTs time pattern = position reconstruction of the event -> Δ R of events
- Each trigger has its GPS time -> △ time of events

We have then golden candidates found as time and spatial coincidences:

- They can be due to:
 - ✓ Geo-neutrinos;
 - ✓ Reactor antineutrinos;
 - ✓ Non-antineutrino backgrounds;
 - We need to estimate different contributions and then extract the number of measured geo-neutrinos by fitting the Eprompt energy spectrum;

Geoneutríno analysís

Geoneutrino experimental results

KamLAND (Japan)

- <u>The first investigation in 2005</u> CL < 2σ Nature 436 (2005) 499
- <u>Update in 2008</u>
 73 <u>+</u> 27 geonu's
 PRL 100 (2008) 221803

<u>99.997 CL observation in 2011</u> <u>106</u> ⁺²⁹ - 28 geonu's (March 2002 – April 2009) 3.49 x 10³² target-proton year Nature Geoscience 4 (2011) 647

• Latest result in 2013

116 ⁺²⁸ ₋₂₇ geonu's

(March 2002 – November 2012) 4.9 x 10³² target-proton year 0-hypothesis @ 2 x 10⁻⁶ PRD 88 (2013) 033001

Borexino (Italy)

<u>99.997 CL observation in 2010</u>
 9.9 ^{+4.1} - 3.4 geonu's

small exposure but low background level (December 2007 – December 2009) 1.5 x 10³¹ target-proton year PLB 687 (2010) 299

• <u>Update in 2013</u>

14.3 <u>+</u> 4.4 geonu's

(December 2007 – August 2012) 3.69 x 10³¹ target-proton year 0-hypothesis @ 6 x 10⁻⁶ PLB 722 (2013) 295–300

<u>NEW in June 2015: 5.9σ CL</u> 23.7 ^{+6.5}/₅₇ (stat) ^{+0.9}/₆₅ (sys) geonu's

(December 2007 – March 2015) 5.5 x 10³¹ target-proton year 0-hypothesis @ 3.6 x 10⁻⁹ PRD 92 (2015) 031101 (R)

Borexino analysis and results

Expected crustal signal at LNGS

Expected crustal signal local LOC + Rest-Of-the Crust 23.4 <u>+</u> 2.8 TNU

World distribution of reactors

Reactors around LNGS

Calculation of reactor anti-v signal

$$\Phi\left(E_{\bar{v}_{e}}\right) = \sum_{r=1}^{N_{react}} \sum_{m=1}^{N_{month}} \frac{T_{m}}{4\pi L_{r}^{2}} P_{rm} \sum_{i=1}^{4} \frac{f_{ri}}{E_{i}} \Phi_{i}\left(E_{\bar{v}_{e}}\right) P_{ee}\left(E_{\bar{v}_{e}}; \hat{\vartheta}, L_{r}\right)$$

From the literature:

- Ei : energy release per fission of isotope i (Huber-Schwetz 2004);
- Pee: oscillation survival probability;

Calculated:

- Tm: live time during the month m;
- Lr: reactor r detector distance;

Data from nuclear agencies:

- Prm: thermal power of reactor r in month m (IAEA, EDF, and UN data base);
- fri: power fraction of isotope i in reactor r;

Expected reactor signal at LNGS

Non-antineutrino background sources

1) Cosmogenic-muon induced:

•⁹Li and ⁸He decaying β (electron) + neutron;
•neutrons of high energies;

neutrons scatters proton = prompt signal;

```
neutron is captured = delayed signal;
```

Non-identified muons;

2) Accidental coincidences;

3) Due to the internal radioactivity: (α ,n) reactions

Cosmogenic background

⁹Li-⁸He background

lsotope	T _{1/2} [ms]	Decay mode	BR [%]	Q _β [MeV]
⁸ He	119.0	β + n	16	5.3, 7.4
⁹ Li	178.3	β + n	51	1.8, 5.7, 8.6, 10.8, 11.2

Prompt-energy spectrum of LiHe candidates

Monte Carlo simulation does reproduce the measured LiHe spectrum

⁹Li-⁸He background

Isotope	T _{1/2} [ms]	Decay mode	BR [%]	Q _β [MeV]
⁸ He	119.0	β + n	16	5.3, 7.4
⁹ Li	178.3	β + n	51	1.8, 5.7, 8.6, 10.8, 11.2

Time from the last muon > 2 s

Only candidates from this time window can appear in the final spectrum used in the geoneutrino analysis

⁹Li-⁸He background

Isotope	T _{1/2} [ms]	Decay mode	BR [%]	Q _β [MeV]
⁸ He	119.0	β + n	16	5.3, 7.4
⁹ Li	178.3	β + n	51	1.8, 5.7, 8.6, 10.8, 11.2

Accidental background

Pairs of uncorrelated signals occurring close to each other in space and time accidentally

Search for coincidences in the off-time window Δt (2 s – 20 s) OTHER SELECTION CUTS KEPT THE SAME

Rate observed in the 18 s time window, just scale back to the 1360 μ s window

Accidental background

Pairs of uncorrelated signals occurring close to each other in space and time accidentally

Search for coincidences in the off-time window Δt (2 s – 20 s) OTHER SELECTION CUTS KEPT THE SAME

Accidental background

Pairs of uncorrelated signals occurring close to each other in space and time accidentally

Search for coincidences in the off-time window Δt (2 s – 20 s) OTHER SELECTION CUTS KEPT THE SAME

¹³C(α, neutron)¹⁶O background

- Isotopic abundance of ¹³C: 1.1%
- 210 Po(α) = 14.1 cpd / ton (average value)

¹³C(α, neutron)¹⁶O background

- Isotopic abundance of ¹³C: 1.1%
- 210 Po(α) = 14.1 cpd / ton (average value)

 How do we know how much
 ²¹⁰Po (alpha) we have?

2. We can separate alphas from betas!

3. How?

¹³C(α, neutron)¹⁶O background

In the geoneutrino analysis we use:

- Monte Carlo based energy (charge) spectrum
- the rate constrained to the calculated value based on measured ²¹⁰Po contamination

Summary of

non-antineutrino backgrounds in Borexino

Number of events among all 77 antineutrino candidates

⁹ Li- ⁸ He	$0.194^{+0.125}_{-0.089}$
Accidental coincidences	0.221 ± 0.004
Time correlated	$0.035^{+0.029}_{-0.028}$
(α, n) in scintillator	0.165 ± 0.010
(α, n) in buffer	< 0.51
Fast n's (μ in WT)	< 0.01
Fast n's (μ in rock)	< 0.43
Untagged muons	0.12 ± 0.01
Fission in PMTs	0.032 ± 0.003
²¹⁴ Bi- ²¹⁴ Po	0.009 ± 0.013
Total	$0.78^{+0.13}_{-0.10}$
	<0.65(combined)

1. $E_{prompt} > E_{prompt}$ @ IBD threshold considering energy resolution: charge > 408 pe

When geoneutrino has its minimal possible energy to trigger the IBD interaction (1.8 MeV), the created positron has no kinetic energy.

Thus, the prompt signal has a visible energy of 2 annihilation gammas 2 x 511 keV = 1.022 MeV

In Borexino: 1 MeV = 500 photoelectrons in the center of the detector

Statistical fluctuation: sqrt(500) = 22 photoelectrons

The lower energy limit on the prompt signal is 4-5 sigma below the central expected value

- 1. $E_{prompt} > E_{prompt}$ @ IBD threshold considering energy resolution: Q > 408 pe
- 2. $E_{delayed}$: 2.2 MeV γ peak with low-energy tail at the border; 860 < Q < 1300 pe

- 1. $E_{prompt} > E_{prompt}$ @ IBD threshold considering energy resolution: Q > 408 pe
- 2. $E_{delayed}$: 2.2 MeV γ peak with low-energy tail at the border; 860 < Q < 1300 pe
- **3.** $\Delta \mathbf{R} < 1$ m: optimized for signal/ accidental background

Radius [m]

- 1. $E_{prompt} > E_{prompt}$ @ IBD threshold considering energy resolution: Q > 408 pe
- 2. $E_{delayed}$: 2.2 MeV γ peak with low-energy tail at the border; 860 < Q < 1300 pe
- 3. $\Delta \mathbf{R} < 1$ m: optimized for signal/ accidental background
- **4.** Δt between prompt and delayed :

 $20 < \Delta t < 1280 \ \mu s$: 4.8 x neutron capture time

 $\tau = (257.4 \pm 2.4) \, \mu s$

- 1. $E_{prompt} > E_{prompt}$ @ IBD threshold considering energy resolution: Q > 408 pe
- 2. $E_{delayed}$: 2.2 MeV γ peak with low-energy tail at the border; 860 < Q < 1300 pe
- 3. $\Delta \mathbf{R} < 1$ m: optimized for signal/ accidental background
- 4. Δt : 4.8 x neutron capture time (20 < Δt <1280 µs)
- 5. Muon veto:
 - ✓ **Remove muons** (Water Cherenkov OD + pulse shape from ID)
 - ✓ To supress ⁹Li-⁸He cosmogenics: 2 s veto after internal muons: ~11% live time loss.
 - ✓ To supress fast neutrons: 2 ms veto after external muons
 - ✓ Multiplicity cut: no neutron-like events in ± 2 ms window (avoid nondetected muons with multiple neutrons)

6) Fidutial Volume cut:

 $R_{IV}(\Theta, \phi) - R_{prompt}(\Theta, \phi) > 0.30 \text{ m}$: dynamical, follows Inner Vessel shape

- To avoid possible backgrounds originating in the vessel or in the buffer
- Our vessel (nylon balloon) holding the scintillator has a small leak, it is deformed and changes its shape in time
- We reconstruct the vessel shape based on the events from its radioactive contaminants based on 3 weeks of data

7) FADC cut: independent pulse shape check with 400 MHz digitizing system against noise events

Summed signal from all PMTs

Example of a normal event

All candidates checked by eye and a specially developed noise filter based on a Fourier transform

8) Pulse shape: require β -like signal for the delayed with Gatti_{$\alpha\beta$} < 0.015

To suppress ²²²Rn-decay with 10⁻⁴ Branching Ratio

Prompt event: ${}^{214}Bi(\beta)$ Delayed event: ${}^{214}Po(\alpha + \gamma)$

> γ is less quenched than α ²¹⁴Po($\alpha + \gamma$) has higher visible energy than ²¹⁴Po(α) can be still recognized as α -like with

Decay mode	Branching ratio	Energy	Number of expected
	[%]	[keV]	events (110k Bi-Po)
Alpha	99.99	E(alpha) = 7833.46	110k
Alpha + Gamma	1.04 x 10-4	E(alpha) = 7033.76	11
		E(gamma) = 799.7	
Alpha + Gamma	6.0 x 10-7	E(alpha) = 6735.76	0.066
		E(gamma) = 1097.7	

- 1. $E_{prompt} > E_{prompt}$ @ IBD threshold considering energy resolution: Q > 408 pe
- 2. $E_{delayed}$: 2.2 MeV γ peak with low-energy tail at the border; 860 < Q < 1300 pe
- **3.** $\Delta \mathbf{R} < 1$ m: optimized for signal/ accidental background
- 4. Δt : 4.8 x neutron capture time (20 < Δt <1280 µs)
- 5. Muon veto
- 6. **FV cut:** $R_{IV}(\Theta, \phi) R_{prompt}(\Theta, \phi) > 0.30 \text{ m}$: dynamical, follows IV shape
- 7. FADC cut: independent pulse shape check with 400 MHz digitizing system
- 8. Pulse shape delayed: ²²²Rn-decay (10⁻⁴ BR) ²¹⁴Bi(β)-²¹⁴Po(α + γ): Gatti_{$\alpha\beta$} < 0.015

Total efficiency = (84.2 ± 1.5)% (MC). 77 candidates selected

Spectral fit of E_{prompt}(photoelectrons, pe)

Unbinned maximal likelihood fit

- Geoneutrinos free
 - theoretical spectra -> MC (detector response) -> E_{prompt} (pe) spectrum
 - ✓ U/Th ratio
 - fixed to chondritic value
 - o Left free
- Reactor antineutrinos free
 - Calculated spectra -> MC (detector response) -> E_{prompt} (pe) spectrum
- Other backgrounds with constrained amplitudes
 - ✓ ⁹Li-⁸He spectra based on MC
 - Measured accidental background spectrum from off-time coincidences
 - ✓ MC-based (α , n) background shape

Shape of the expected spectra

Theoretical spectra: input to MC

MC output:

includes detector response function

FIT OF THE DATA

Latest Borexino geoneutrino results

Two types of fits:

1) $m(^{232}Th)/m(^{238}U) = 3.9$ (CI chondrites) $S(^{232}Th)/S(^{238}U) = 0.27$ $S(^{238}U)/S(^{232}Th) = 3.7$ $N_{geo} = 23.7 + 6.5 - 5.7 (stat) + 0.9 - 0.6 (sys)$ events $S_{geo} = 43.5 + 11.8 - 10.4 (stat) + 2.7 - 2.4 (sys)$ TNU

Geological implications of the new Borexino results

Radiogenic heat

- Radiogenic heat (U+Th): 23-36 TW for the best fit and 11-52 TW for 1σ range
- Considering chondritic mass ratio Th/U=3.9 and K/U = 10⁴ : Radiogenic heat (U + Th + K) = 33⁺²⁸-20 TW to be compared with 47 ± 2 TW of the total Earth surface heat flux (including all sources)

Geological implications of the new Borexino results

Mantle signal • $S_{Mantle} = S_{measured} - S_{crust}$ • $S_{measured} = 43.5 + 11.8_{-10.4} (stat) + 2.7_{-2.4} (sys) TNU$ • Crustal signal at LNGS "known" ROC (Huang at al.) + LOC (Coltorti at al.) $S_{Crust} = (23.4 \pm 2.8) TNU$

• Non-0 mantle signal at 98% CL

 $S_{mantle(Borexino)} = 20.1^{+15.1}_{-10.3}$ TNU

(taking the central values: 23.7 events distributed as ~13 from the crust and 11 from the mantle)

• $S_{mantle (KamLAND)} = 5.0 \pm 7.3 \text{ TNU}$

KamLAND analysis and results

KamLAND

Kamioka Liquid Scintillator Antineutrino Detector

The world largest liquid scintillator detector, located in Kamioka mine, Hida-city, Gifu, in Japan, under 1km (2.7 km-water-equiv.) rock overburden

DAQ started in 2002

130 people and about 35 institutes from Japan, the United States, Korea, China, Poland, Spain, Canada and UK.

bkvo

KamLAND

KamLAND-Phases

- ✓ Period 1: 2002 2007
- ✓ Period 2 (After a long purification campaign) 2009 – March 2011
- ✓ Period 3 After Fukushima
 when many of the nuclear
 reactors were switched off

2013 results PRD 88 (2013) 033001

"Solar" sector: oscillation pattern f(L/E)

L = 180 km (power weighted average), E = 1.8 - 10 MeV)

Geoneutrinos: time-independent rate

108
Analysis - Rate+Shape+Time Analysis (2)

best-fit Nu+NTh = 116+28-27

Flux : $3.4^{+0.8}$ -0.8 × 10⁶ cm⁻²s⁻¹

0 signal rejected at 99.9998% C.L. (2 × 10⁻⁶)

From KamLAND talk of H. Watanabe @ Neutrino Geoscience 2013

Analysis - Rate+Shape+Time Analysis (1)

From KamLAND talk of H. Watanabe @ Neutrino Geoscience 2013

Latest KamLAND geoneutrino results

