Borexino

Presented by Livia Ludhova (RWTH Aachen and IKP-2 Forschungzentrum Jülich, Germany)

Laboratori Nazionali del Gran Sasso

- Muon flux: 3.0 10⁻⁴ m⁻²s⁻¹
- Neutron flux: 2.92 10⁻⁶ cm⁻²s⁻¹ (0-1 keV) 0.86 10⁻⁶ cm⁻²s⁻¹ (> 1 keV)
- Rn in air: 20-80 Bq m⁻³
- Surface: 17 800 m²
- Volume: 180 000 m³
- Ventilation: 1 vol / 3.5 hours
- Mechanical Design and Workshop
- Electronics Lab & Service
- Chemistry Lab & Service
- ULB Lab & Service
- > 900 users from 29 countries
- ~ 100 Staff
- 225 avg. daily presence in 2014
- ~ 8000 visitors/y
- Virtual tour via Street View

LABORATORI NAZIONALI GRAN SASSO / LNGS (ITALY)

The **LNGS** altitude is 963 m and the average rock cover is about 1,400 m.

The shielding capacity against cosmic rays is about 3,800 meter water equivalent (m.w.e.): the muon flux is reduced of a factor 10⁶ respect to the surface.

 $\Phi(\mu) \sim 1 \, \mu/{
m m^2/h}$

Borexino detector

- Materials more and more pure as they get closer to the "core", the Fiducial Volume
- Ultimate background depending on material purity and, mainly, radioactive traces in the scintillator at extremely low levels

15 years of work to reach required radiopurity

Energy spectrum of solar neutrinos

Borexino solar neutrino results

Borexino history

Borexino history

What is going on now:

- update of all solar neutrino measurements (⁷Be, pep, pp, ⁸B)
- effort to measure **CNO neutrinos** (not easy...)
- Final update of **geoneutrino** measurements
- 3-4 months long calibration campaign ahead

SOX project:

- ✓ Short distance neutrino oscillations with Borexino
- ✓ insertion of a strong ¹⁴⁴Ce/¹⁴⁴Pr antineutrino generator at the end of 2016
- ✓ Search for a sterile neutrino

Why it took so long....

Low background and radiopurity of the construction materials

- In 100 ton of scintillator: ~50 events/day from ⁷Be solar v expected (50 / 86400 / 100 t = ~6 10⁻⁹ Bq/kg)
- The scattering of a neutrino on an electron is **intrinsically not distinguishable** from a β radioactivity event or from Compton scattering from γ radioactivity
- <u>Typical natural radioactivity:</u>

✓ Good mineral water:	~10 Bq/kg	⁴⁰ K, ²³⁸ U, ²³² Th
✓ Air:	$\sim 10 \ Bq/m^3$	²²² Rn, ³⁹ Ar, ⁸⁵ Kr
✓ Typical rock	~100-1000 Bq/kg	^{40}K , ^{238}U , ^{232}Th , + many others

If you want to detect solar neutrinos with liquid scintillator, you must be <u>9-10 orders</u>
 <u>of magnitude more pure than anything on Earth</u>

Backgrounds now : ²³⁸U< 8 10⁻²⁰ g/g at 95% C.L., ²³²Th < 9 10⁻¹⁹ g/g at 95% C.L.

CTF: Counting Test Facility

5 m^3 of scintillator and 100 PMTs

Was built to test the radiopurity of the scintillator, since all other detectors were just too radioactive for the required precision!

Just for illustration

Complexity of the plants for scintillator purification by distillation, water extraction and nitrogen stripping

Detector picture gallery

Detector filling

End October 2006

<u>LAKN –</u> <u>Low Argon and</u> <u>Krypton Nitrogen</u>

<u>Ultra-pure water</u>

Fotos taken with one of 7 CCD cameras placed inside the detector

Detector filling

March 2007

<u>Ultra-pure water</u>

Detector fully filled on May 15^{th,} 2007: DAQ starts

PMT calibration

G. Alimonti et al. / Nuclear Instruments and Met

- Time alignment among PMTs
- Shape of the single photoelectron peak for every PMT

Borexino calibration with radioactive sources

	γ					β		α	n (AmBe)					
	⁵⁷ Co	¹³⁹ Ce	²⁰³ Hg	⁸⁵ Sr	⁵⁴ Mn	⁶⁵ Zn	⁶⁰ Co	⁴⁰ K	¹⁴ C	²¹⁴ Bi	²¹⁴ Po	n-p	n + ¹² C	n+Fe
energy (MeV)	0.122	0.165	0.279	0.514	0.834	1.1	1.1, 1.3	1.4	0.15	3.2		2.226	4.94	~7.5

- Absolute source position: LED and CCD cameras (± 2cm);
- cca. 300 points through the whole scintillator volume;
- Detector response as a function of position;
- Fiducial volume definition and tuning of the spatial reconstruction algorithm;
- Energy scale definition

precise calibration in the 0-7 MeV range.

• Tuning of the full Monte Carlo simulation

SYSTEMATIC ERROR REDUCTION For ALL SOLAR NEUTRINO RESULTS

Borexino data structure

- Charged particles and γ produce scintillation light: photons hit inner PMTs;
- DAQ trigger: > 25 inner PMTs (from 2212) are hit within 60-95 ns:

Outer detector gives a muon veto if at least 6 outer PMTs (from 208) fire;

Light yield: (500 <u>+</u> 12) p.e./MeV taking into account quenching factor	Energy resolution (s): 10% @ 200 keV 8% @ 400 keV 6% @ 1000 keV					
Spatial resolution: 35 cm @ 200 keV 16 cm @ 500 keV	070 @ 1000 Kev					

Fiducial Volume

For geoneutrinos only 25-30 cm cut along the vessel!

Muon and neutron detection

- μ are identified by the OD and by the ID
 - OD eff: > 99.28%
 - ID analysis based on pulse shape variables
 - Cluster mean time, peak position in time
 - Combined overall efficiency > 99.992%
 - After cuts, μ not a relevant background for ⁷Be
 - Residual background: < 1 count /day/ 1 00 t

Muon track reconstruction

Position reconstruction

• Measured hit time pattern corrected for the time-of-flight

Probability density function of measuring the hit, as a function of total charge on each PMT

and then it maximizes the likelihood $L_E(\vec{r}_0, t_0 | (\vec{r}^j, t_i^j))$ that the event occurs at the time t_0 in the position \vec{r}_0 given the measured hit space-time pattern (\vec{r}^j, t_i^j) .

KamLAND

KamLAND Kamioka Liquid Scintillator Antineutrino Detector

The world largest liquid scintillator detector, located in Kamioka mine, Hida-city, Gifu, in Japan, under 1km (2.7 km-water-equiv.) rock overburden

DAQ started in 2002

130 people and about 35 institutes from Japan, the United States, Korea, China, Poland, Spain, Canada and UK.

Goals of KamLAND

- Discovery of reactor antineutrino oscillations
- Principal goal: reactor antineutrinos oscillations with L = 260 km, measurement of Δm_{12}^2
- Geoneutrinos
- Antineutrinos from unknown sources

Fig. 5. (a) Kamiokande dismantling in 1998. (b) Stainless steel vessel construction in 1999-2000. (c) PMT installation in 2001 and (d) Oil-fill inside the detector in 2001.

Calibration with radioactive sources

• Light yield of 300 p.e./MeV in the center of the detector

Energy resolution = 6.2% / sqrt(E [MeV])

Position reconstruction resolution = 30 cm/ sqrt(E [MeV])

Event display

KamLAND Event Display

Real **low energy event** forms a cluster of PMTs, and PMT timing distribution has a well defined peak. Muon Outer Detector sees **no** signal. A PMT signal consists of **several** photo-electrons.

Noise events

(amLAND Event Display

Noise events are characterized by a **flat timing distribution** and absence of the event vertex. They are easily recognized and rejected.

Muon events

KamLAND Event Display

Muons passing through buffer oil emit Cherenkov light only:

dQ/dx ~ 31 p.e./cm

Muons passing through **scintillator** produce both scintillation and Cherenkov light: dQ/dx ~ 630 p.e./cm

Muons in KamLAND

- Muon rate is ~0.34 Hz, muon mean energy ~250 GeV
- 2 ms veto of the entire detector volume <u>after all muons</u> effectively removes background from spallation neutrons (~3000 events/kton/day)
- 2 s veto of the entire detector volume <u>after showering muons</u>
 Δ E > 3GeV (~10⁶ photo-electrons),
 Δ E = detected μ energy expected energy for minimum ionizing μ)
- 2 s veto of the entire detector volume for the <u>muons tracked</u> <u>with poor reliability</u>
- 2 s veto along 3m radius cylinder for <u>well-tracked non-</u> showering muons
- The fraction of muon veto is ~10% of runtime

KamLAND-Zen: 0ν-ββ decay

- ✓ the first liquid scintillator based detector entering on the scene of 0v- $\beta\beta$ decay experiments
- \checkmark if this process would be observed: neutrinos Majorana particles
- ✓ Start in 2011 (Phase 1): doping of the scintillator with ¹³³Xe
- \checkmark Problem with ^{110m}Ag contamination
- ✓ 2012-2013 long purification campaign and Dec 2013 Phase 2 (^{110m}Ag reduced by a factor 10)

2.44 wt%

 $\sigma_{\rm E}(2.5 {\rm MeV}) = 4\%$

PPO

xenon

2-neutrino double- β decay ($2\nu\beta\beta$):

- $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$
- allowed in the Standard Model
- measured in several isotopes
- $T_{1/2}^{2\nu}$ in the range $10^{19} 10^{24}$ yr

Neutrinoless double- β decay $(0\nu\beta\beta)$:

- $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$
- foreseen by many extensions of the Standard Model
- lepton number violation ($\Delta L = 2$)
- $T_{1/2}^{0\nu}$ limits in the range $10^{21} 10^{26}$ yr

 $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta},Z)|\mathcal{M}_{0\nu}(A,Z)|^2|m_{\beta\beta}|^2$

- $G_{0\nu}$ phase space factor
- $\mathcal{M}_{0\nu}$ nuclear matrix element

$$|m_{\beta\beta}| \equiv \left|\sum_{i} U_{ei}^{2} m_{i}\right|$$

= $\left|c_{12}^{2} c_{13}^{2} m_{1} + s_{12}^{2} c_{13}^{2} m_{2} e^{i2\alpha} + s_{13}^{2} m_{3} e^{i2\alpha}\right|$

• $|m_{\beta\beta}|$ effective Majorana mass

KamLAND-ZEN Phase-2 results

Future projects

JUNO detector

Main goal: Determination of neutrino mass hierarchy based on reactor antineutrinos with L = 53 km at 700 m depth

JUNO potential to measure geoneutrinos

Big advantage:

 Big volume and thus high statistics (400 geonu / year)!

Main limitations:

- Huge reactor neutrino background;
- Relatively shallow depth cosmogenic background;

Critical:

 Keep other backgrounds (²¹⁰Po contamination!) at low level and under control;

JUNO can provide another geoneutrino measurement with a

comparable or even a better precision than existing results at another

location in a completely different geological environment;

SNO+ at Sudbury, Canada

SHOULD BE COMING SOON!

After SNO: D₂O replaced by 1000 tons of liquid scintillator M. J. Chen, *Earth Moon Planets* **99**, 221 (2006)

Placed on an old continental crust: 80% of the signal from the crust (Fiorentini et al., 2005)

BSE: 28-38 events/per year

Hanohano at Hawaii

Hawaii Antineutrino Observatory (HANOHANO = "magnificent" in Hawaiian

Project for a 10 kton liquid scintillator detector, movable and placed on a deep ocean floor

J. G. Learned et al., XII International Workshop on Neutrino Telescopes, Venice, 2007.

Since Hawai placed on the U-Th depleted oceanic crust 70% of the signal from the mantle! Would lead to very interesting results! (Fiorentini et al.)

BSE: 60-100 events/per year

Geoneutrino future

- Borexino will switch to SOX (see later) in late 2016 closure of geoneutrino dataset;
- **KamLAND**: possible next update with low reactor-background data after the end of 2015;
- SNO+ (Canada): 780 ton & DAQ start in 2017; detector should be able to provide geoneutrino results;
- JUNO (China): 20 kton & DAQ start in 2020; If non antineutrino background low and under control, JUNO will soon beat the precision of existing measurements;
- HanoHano (Hawaii): 10 kton underwater detector with ~80% mantle contribution: "THE" GEONU DETECTOR: MISSING FUNDING!
- New interdisciplinary field established: NEUTRINO GEOSCIENCE conference every two years
- Power of combined analysis and importance of multi-site measurements at geologically different environments

Geoneutrino summary

- The new interdisciplinary field is born;
- Collaboration among geologists and physicists is a must;
- The current experimental results confirm that geo-neutrinos can be successfully detected;
- Signal prediction and data interpretation: local geology around the experimental site must be studied;
- The first results are in agreement with geological expectations
- New measurements and the new generation experiments are needed for geologically highly significant results: