
Neutrino Production by NC 
•  e.g. supernova neutrinos, thermal production 

e− 

e+ νe,µ,τ

νe,µ,τ
_ 

Z0 do these neutrinos 
oscillate? 

Think about this for your homework! 



Stopped Pion Neutrino Beam 
π + → µ+ +νµ Eν = pν

2 +mν
2

pion rest mass: 139.57 MeV 
neutrino energy: 29.79 MeV 
muon energy: 109.78 MeV 
 
Is it possible to measure the kinematics of this reaction so 
precisely, that you can determine the neutrino mass 
eigenstate emitted? 
 
If yes, does this neutrino “oscillate” as it propagates? 
 
If not, how to explain the creation of a pure flavour state 
and a pure mass eigenstate, at the same time? 



Previously, on Neutrino Physics… 
•  started with the well-known context of neutrino oscillations 

established by Super-K and SNO and other experiments 
•  examined simple and standard mathematical framework 

for 2-neutrino oscillations 
•  and the oscillation parameters (mixing angles, Δm2) 

•  now you really understand neutrino oscillations 
•  Schrödinger’s Cat analogy 
•  Young’s Two-Slit Experiment analogy 
•  cast into the parlance of quark mixing 

•  full 3×3 PMNS mixing matrix mathematical framework 
•  angles, phases, what are the possible values 

•  octant degeneracy and mass hierarchy 
•  all of the above for vacuum oscillations 



o propagation through matter affects νe and νµ, ντ differently 
[Mikheyev, Smirnov and Wolfenstein – MSW effect] 

o forward-scattering amplitudes are different 
o optical theorem → like an index of refraction 

Matter-Enhanced ν Oscillations 

e− 

Z0 

νe,µ,τ

e− 

νe,µ,τ

W+ 

νe 

e− νe 

e− 

νe wavefunction phase is affected by propagating through ordinary (dense) matter 

(Wolfenstein, 1978; Mikheyev & Smirnov, 1985) 



Plane Wave Scattering – Optical Theorem 
•  total cross section: 

•  phase shift: 

where f(p,0) is the forward-scattering 
amplitude 
 
in optics, complex index of refraction: 

σ tot =
4π
p
Im[ f (p,0)]

Δφ(x) = 2π
p
N xRe[ f (p,0)]

n = 1+ 2π
k2

N f (k,0)



CC Forward-Scattering Amplitude 

Re[ f (p,0)]= − 2GF p
2π

Δφ(x) = − 2GF Ne x

•  only the additional CC interaction for νe is important 
•  the NC interaction introduces the same phase shift for all 

flavours and can be ignored 
•  forward-scattering amplitude for this diagram can be 

calculated 

W+ 

νe 

e− νe 

e− 

another common approach is to translate this interaction into a 
potential term in the Hamiltonian: VCC = 2GF Ne



Propagating in Matter versus Vacuum 
 
 

  
 

 
 

Hamiltonian operator is:       and thus propagating through matter 
 
 
 
 
 
 
after eliminating common phase ‘E’ between ν1 and ν2 
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ν k (t) = e− iEkt ν k  in vacuum becomes

ν k (t) = e− iEkt Uαk
α≠e
∑ να + e− i(Ekt+ 2GF Ne x )Uek νe  in matter



“Hamiltonian” for Propagating through Matter 

•  this describes the time evolution of flavour states 
(simplified 2-flavour description) 

•  this matrix is not diagonal 
•  you diagonalize a matrix by finding a transformation R that 

rotates the non-diagonal matrix into a new basis 
•  the new diagonal entries are the eigenvalues 
•  the transformation R is the “rotation” from the non-

diagonal basis vectors to the new basis of eigenvectors 
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Diagonalize the Matter Hamiltonian 
R† M 2 R where
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solve for θm in terms of θ, Δm2, E, GF, Ne                define A = 2E 2GF Ne

tan2θm = Δm2 sin2θ
−A + Δm2 cos2θ

 or

sin2 2θm = (Δm2 sin2θ )2

(A − Δm2 cos2θ )2 + (Δm2 sin2θ )2



Symmetrize and Diagonalize 
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identity matrix 

units of mass squared 



Eigenvalues of M2 in Matter 
•  use formula for diagonalizing 2×2 real symmetric matrix 
•  λ1 and λ2 are effective masses squared of ν1m and ν2m 

λ2,1 = (Σ + A)± (A − Δm2C2θ )
2 + (Δm2S2θ )
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Limits and Resonance 
• A→0, masses and mixing angles revert to vacuum values 
• A≫Δm2, then θm = π/2, ν1m is all νµ

•  sort of interesting…but no oscillations (it’s all ν1m = νµ) 

•  resonance condition: A = Δm2 cos 2θ, then θm = π/4, no 
matter how small the vacuum mixing angle θ
•  maximal mixing is generated at resonance 

tan2θm = Δm2 sin2θ
−A + Δm2 cos2θ

 or
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Characteristic Length (again) 
•  for vacuum oscillations and for matter effects LV = 4πE

Δm2

Le =
2π
2GFNe

tan2θm = Δm2 sin2θ
−A + Δm2 cos2θ

 or

tan2θm = tan2θ

− A
Δm2 sec2θ +1

tan2θm = tan2θ

− A
Δm2 cos2θ

+1
= tan2θ

− LV
Le cos2θ

+1

A = 2E 2GF Ne

recall the discussion about the 1st and 2nd octant in the previous lecture… 
2nd octant is like flipping the mass hierarchy (and a relative phase between the 
mass states, irrelevant) and mapping back to the 1st octant 
 
but for matter effects, it matters! 



To Resonance or Not to Resonance 
•  if the vacuum mixing angle is in the first octant, the resonance 

condition is possible 
•  if the vacuum mixing angle is in the second octant, equivalent 

to flipping the mass hierarchy, the resonance condition is not 
possible 

•  you can see the 2nd octant, flipped hierarchy equivalency 
directly 

•  it is possible (nature allowed us) for an experiment to observe 
the matter effect and conclude which hierarchy is involved 
•  the 1st and 2nd octant degeneracy can be broken 

tan2θm = tan2θ

− A
Δm2 cos2θ

+1
= tan2θ

− LV
Le cos2θ

+1

this happened 
for solar neutrinos 
(SNO) 



Historical Comment: 
Dark Side in Solar Neutrino Oscillations 
•  the 2nd octant was briefly referred to as the “dark 

side” (still called that by old school ν, like me) 
•  b/c oscillations were thought about as sin22θ and people 

had not looked at solutions in the second octant for solar 
neutrinos for a period of time (though initially they had)
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The Dark Side of the Solar Neutrino Parameter Space∗
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Results of neutrino oscillation experiments have always been presented on the (sin2 2θ, ∆m2) param-
eter space for the case of two-flavor oscillations. We point out, however, that this parameterization
misses the half of the parameter space π

4
< θ ≤ π

2
(“the dark side”), which is physically inequivalent

to the region 0 ≤ θ ≤ π

4
(“the light side”) in the presence of matter effects. The MSW solutions

to the solar neutrino problem can extend to the dark side, especially if we take the conservative
attitude to allow higher confidence levels, ignore some of the experimental results in the fits, or relax
theoretical predictions. Furthermore, even the so-called “vacuum oscillation” solution distinguishes
the dark and the light sides. We urge experimental collaborations to present their results on the
entire parameter space.

In the Standard Model of particle physics, neutrinos
are strictly massless. Recently, however, the Super-
Kamiokande collaboration studied atmospheric neutrinos
and reported a strong evidence for neutrino oscillations
[1], and hence a finite neutrino mass. The most likely
interpretation of their data is the oscillation between νµ

and ντ . This made it also natural to interpret another
long-standing issue in neutrino physics, the deficit of the
solar νe flux [2], in terms of neutrino oscillations. How-
ever, the solar neutrino deficit has not been regarded as
convincing evidence for neutrino oscillations in the com-
munity. The reason is probably multifold but two main
objections are the following. (1) Neutrino experiments
are so difficult that it is possible that some of the data
are not entirely correct. (2) The physics of the Sun is so
complex that the neutrino flux calculations in the Stan-
dard Solar Model (SSM) may have underestimated the
theoretical uncertainties.

To resolve this situation, a new generation of solar
neutrino experiments, such as Super-Kamiokande, SNO,
Borexino, GNO, KamLAND, etc, is looking for an evi-
dence for solar neutrino oscillations without relying on
the SSM in well-understood experimental environments.
They aim not only at establishing oscillations but also at
overdetermining the solution in the next few years. Such
data will eventually supersede data from the past exper-
iments. It is therefore important to analyze the future
data without too much prejudice based on the past data.

In this letter, we point out that the study of neutrino
oscillations on the (∆m2, sin2 2θ) parameter space done
traditionally is incomplete, since it covers only the range
0 ≤ θ ≤ π

4
(“the light side”). Indeed, some of the solu-

tions to the solar neutrino puzzle extend to the other half
of the parameter space π

4
< θ ≤ π

2
, which we call “the

dark side,” and hence it is phenomenologically necessary
to include both halves of the parameter space. This is
especially true once one employs a more conservative atti-

tude which either allows higher confidence levels, ignores
some of the experimental data (especially Homestake [3]),
or relaxes the theoretical prediction on the 8B flux.

Neutrino oscillations occur if neutrino mass eigenstates
are different from neutrino weak eigenstates. Assuming
that only two neutrino states mix, the relation between
mass eigenstates (ν1 and ν2) and flavor eigenstates (for
example νe and νµ) is simply given by

|ν1⟩ = cos θ|νe⟩ − sin θ|νµ⟩,

|ν2⟩ = sin θ|νe⟩ + cos θ|νµ⟩, (1)

where θ is the vacuum mixing angle. The mass-squared
difference is defined as ∆m2 ≡ m2

2 − m2
1. We are in-

terested in the range of parameters that encompasses all
physically different situations. First, observe that Eq. (1)
is invariant under θ → θ+π, |νe⟩ → −|νe⟩, |νµ⟩ → −|νµ⟩,
and hence the ranges [−π

2
, π

2
] and [π

2
, 3π

2
] are physically

equivalent. Next, note that it is also invariant under
θ → −θ, |νµ⟩ → −|νµ⟩, |ν2⟩ → −|ν2⟩, hence it is sufficient
to only consider θ ∈ [0, π

2
]. Finally, it can also be made

invariant under θ → π
2
− θ, |νµ⟩ → −|νµ⟩ by relabeling

the mass eigenstates |ν1⟩ ↔ |ν2⟩, i.e. ∆m2 → −∆m2.
Thus, we can take (∆m2 > 0) without loss of general-
ity. All physically different situations are obtained by
allowing 0 ≤ θ ≤ π

2
.

For the case of oscillations in the vacuum, the survival
probability is given by

P (νe → νe) = 1 − sin2 2θ sin2

(

1.27
∆m2

E
L

)

. (2)

Here, ∆m2 is given in eV2/c4, E in GeV, and L in km.
In this case the oscillation phenomenon can be param-
eterized by ∆m2 and sin2 2θ, since θ and π

2
− θ yield

identical physics. Therefore we can restrict ourselves to
0 ≤ θ ≤ π

4
, and use the parameter space (∆m2, sin2 2θ)

without any ambiguity. This is indeed an adequate pa-

1



Matter Effects for Antineutrinos 
• VCC changes sign for antineutrinos 

 
•  everything said about matter effects, resonance, mass 

hierarchy, is reversed for antineutrinos 

2GFNe → − 2GFNe  for νe



Matter Effect Versus Density 
•  from W.C. Haxton, arXiv:0710.2295 
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finding he was right

FIG. 4: The SNO diagram [21] showing the region consistent with the ES, CC, and NC measurements. Also shown are the
Super-Kamiokande ES results [20] and (designated by dashed lines) the band corresponding to the SSM prediction for the total
8B neutrino flux.
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FIG. 5: A three-flavor plot showing two MSW crossings, the second of which corresponds to a density of ⇠ 104 g/cm3, typical
of the carbon zone of the progenitor of a Type II supernova. The relevant mixing angle ✓13 has not yet been measured.

mechanism to explain the smallness of neutrino mass relative to other SM fermions,

m⌫ ⇠ mD


mD

MR

�
, (5)

where mD is a typical SM Dirac mass and MR a heavy right-handed neutrino mass. That is, m⌫ is suppressed relative
to other SM masses by the small parameter mD/MR. Indeed, an MR ⇠ 0.3⇥ 1015, near the GUT scale, is suggested

λ2,1 = (Σ + A)± (A − Δm2C2θ )
2 + (Δm2S2θ )
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Neutrino States in Matter 

from C. Giunti and C.W. Kim 

In the Sun, electron neutrinos are produced (by the weak interaction) and νe is 
practically all ν2 in dense matter – the Sun makes a “pure” neutrino mass 
eigenstate!  If ν2 propagates adiabatically through decreasing density, Ne…? 
 
Question: does the pure ν2  mass eigenstate oscillate? 

λ2,1 = (Σ + A)± (A − Δm2C2θ )
2 + (Δm2S2θ )
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⎣

⎤
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Nuclear	Fusion	in	the	Core	of	the	Sun	



p + p → 2H + e+ + νe p + e− + p → 2H + νe

2H + p → 3He + γ

3He + 3He → 4He + 2 p 3He + p → 4He + e+ + νe

3He + 4He → 7Be + γ

7Be + e− → 7Li + γ + νe
7Be + p → 8B + γ

7Li + p → α + α 8B → 2 α + e+ + νe

pp Solar Fusion Chain

CNO Cycle
12C + p → 13N + γ 13N → 13C + e+ + νe 

13C + p → 14N + γ
14N + p → 15O + γ 15O → 15N + e+ + νe 

15N + p → 12C + α

Solar Neutrinos 



Neutrino Mass Hierarchy 

ν3

Δm     atmospheric 
~50 meV 

“normal” 

“inverted” 

Δmsolar ≈ 9 meV
Δmatm ≈ 50 meV


