

SUMMER INSTITUTE: USING PARTICLE PHYSICS TO UNDERSTAND AND IMAGE THE EARTH

11-21 July 2016 Gran Sasso Science Institute Europe/Rome timezone

Monday 18 July 2016

Geoneutrinos: origin, detection, background (from reactors and other sources), current geoneutrino measurement, future on geoneutrinos - Room D (09:00-10:00)

- Presenters: Prof. LUDHOVA, Livia

Evaluation of local contribution - Room D (10:00-11:00)

- Presenters: MANTOVANI, Fabio

Volcano structure and eruption - Room D (11:30-12:30)

- Presenters: Dr. MACEDONIO, Giovanni

I implore you... I supplicate you... In the next hour, please don't say...

- I'm a geologist
- I'm a particle physicist
- I'm a geochemist
- I'm a geophysicist
- I'm a nuclear physicist
- I'm an experimental physicist

Please say...

I'm a curious scientist who is presently studying...

Geoneutrinos: evaluation of local contribution

Borexino and KamLAND results

Borexino collaboration, 2015 - Physical Review D 92

** KamLAND collaboration, 2013 - Phys. Rev. D 88

The **oscillated geoneutrino flux** is calculated by taking into account three flavor survival probability P_{ee} and the geoneutrino energy spectrum:

$$P_{ee}(E_{\bar{v}_e}, \vec{r}) = \cos^4(\theta_{13}) \left(1 - \sin^2(2\theta_{12}) \sin^2\left(\frac{\delta m^2 \vec{r}}{4E_{\bar{v}_e}}\right) \right) + \sin^4(\theta_{13})$$

Assuming the detector efficiency $\epsilon = 1$ and 10^{32} free target protons N_p. the geoneutrino signal in **TNU** originated by the radionuclide **X** for a fixed distance **r**, can be calculated:

$$S(\vec{r},X) = \phi(\vec{r},X) P_{ee}(\vec{r},X) \langle \sigma \rangle_X$$

 $[1 \text{ TNU} = 1 \text{ event per } 10^{32} \text{ free proton per year}]$

Integrated inverse beta reaction cross section

The main sources of geoneutrinos

Cumulative geoneutrino signal in JUNO

Strati et al. - Progress in Earth and Planetary Science – 2015 – arXiv:1412.3324

Contributions from crust and mantle

Huang et al. - A reference Earth model for the heat-producing elements and associated geoneutrino flux Geochem. Geophys. Geosyst.

Radioactivity in the mantle: indirect measurement

Fiorentini et al. - 2012 - Physical Review D 86, 033004

Detecting geoneutrinos around the world

In one site, for each radioisotope (²³⁸U, ²³²Th) the expected geo-neutrino signal is the sum of three contributions:

1 - Huang et al. 2014, Geochemistry, Geophysics, Geosystems 15(10).

2 - Fiorentini et al 2012, Physical Review D 86(3) 3 - Strati et al. 2015, Progress in Earth and Planetary Science 2(1).

A refined local model for Kamioka

A world wide reference model^[1] predicts for KamLAND:

Inputs used for the refinement^[2]

- Use a geochemical study of the Japan Arc exposed upper crust (166 samples distinguishing 10 geological classes)
- Use detailed (± 1 km)
 measurements of Conrad and
 Moho depth
- Use selected values for abundances LC
- Build a new crustal map of the Japan Arc (scale ¼° x ¼°)
- Consider possible effect of the subducting plate below Japan

[2] Fiorentini et al. - 2012

Local contribution to geo-n signal in KamLAND

Different local sources of geo-v are investigated and the expected signals are estimated:

Reservoir	S(Th) [TNU]	S(U) [TNU]	
Six-tiles	3.20 ± 0.37	11.17 ± 0.65	
Subducting slub	0.90 ± 0.27	2.02 ± 0.61	
Sea of Japan	0.09 ± 0.03	0.34 ± 0.10	
LOC Total	4.19 ± 0.46	13.53 ± 0.90	

- The local expected signal is 17.7 ± 1.4 TNU to compare with 13.3 TNU
- For a fixed element the 1σ uncertainties are independent
- We assume $\Delta S(U)$ and $\Delta S(Th)$ totally correlated

Geoneutrino in KamLAND: theory and experiment

Including a refined local model, in Enomoto et al. (2007) the expected signal in KamLAND is 35.2 TNU.

[1] Fiorentini et al. - 2012

[2] Huang, Y., et al. - 2013 - arXiv:1301.0365v2

[3] KamLAND collaboration - Phys. Rev. D 88 - 2013

Local contribution to geo-v signal in Borexino

A world wide reference model predicts for Borexino:

Inputs used for the refinement

- The geophysical structure of the crust is modeled using data of CROP seismic sections and from 38 deep oil and gas wells.
- We identify 6 reservoirs: 4 of sediments, UC and LC.
- Representative samples of the sedimentary cover were collected and measured by using ICP-MS
- U and Th content measured in samples collected from outcrops on Alps is adopted for UC and LC

Schematic W-E sections of the main reservoirs

 Cenozoic terrigenous units: sandstones, siltites and clays

 Meso-Cenozoic Basinal Carbonate units: marly and shaly carbonates

 Mesozoic Carbonate units: limestones, dolomites and evaporites

• Permian and Paleozoic clastic units: sandstones, conglomerates, subordinate with carbonates

-25

-30

-35

-40

-45

Longitude (degrees)

MANTLE

13° 00' E

13° 30' E

UC

14° 00' E

MANTLE

-25

-30

-35

-40

-45

14° 30' E

Science needs to be touched !!!!!!!!!

Don't miss the field trip next Wednesday!!!

U and Th content of sediments of the CT

• We collected representative samples of the sedimentary

cover and measured U and Th content by using ICP-MS:

Reservoir	Mass [%]	<i>a</i> (U) [ppm]*	<i>a</i> (Th) [ppm]*	Density [gr/cm³]
Mesozoic Carbonate units	76.8	0.3 ± 0.2	0.2 ± 0.2	2.5
Cenozoic terrigenous	15.6	2.3 ± 0.6	8.3 ± 2.5	2.1
Permian and Paleozoic clastic	5.8	2.2 ± 1.3	8.1 ± 4.9	2.6
Meso-Cenozoic Basinal Carbonate	1.8	1.7 ± 1.8	1.5 ± 1.6	2.3

By using these abundances and the 3D model, the estimated signal from the sedimentary cover is: S_{Sed} = 2.9 TNU

• To be compared with that estimated in Ref. Mod.: S_{Sed} = 0.5 TNU

(remind the 0.5 km sediment layer)

* Standard deviation of measured samples

Reservoir in Ref. Mod.	<i>a</i> (U) [ppm]	<i>a</i> (Th) [ppm]	Density [gr/cm ³]
Sediments	1.7	6.9	2.1 - 2.5

Before and after the refinement

The main results of this study are about the thickness of layers and their composition.

	Before the refinement			After refinement		
Res.	∆z [km]	<i>a</i> (Th) [mg/g]	<i>a</i> (U) [mg/g]	∆z [km]	<i>a</i> (Th) [mg/g]	<i>a</i> (U) [mg/g]
Sed.	~ 0.5	6.9	1.67	~ 13	2.00 ± 0.17	0.80 ± 0.07
UC	~ 10	9.8	2.5	~ 13	8.1 ± 1.6	2.20 ± 0.43
MC	~ 10	6.1	1.6	/	/	/
LC	~ 10.5	3.7	0.6	~ 8	2.6 ± 1.2	0.30 ± 0.10

The local expected signal calculated signal is $S_{After} = 9.7 \pm 1.3 \text{ TNU}$ to

compare with $S_{Before} = 15.3$ TNU.

Geoneutrino in Borexino: theory and experiment

$$S_{EXP} = S_{LOC} + S_{FFC} + S_{Mantle}$$

Contributions to the S_{LOC} Borexino are given by U and Th in: S_{LOC}

Sealments	Ζ.
Loc UC	6.2
Loc LC	0.0
Total S _{LOC}	9.7
	0.

arounu Gran Sasso	Lan				Total	Experiment
	LOC ^[1]	FFC ^[2]	CLM ^[2]	Mantle ^[2]	(theory)	(BX 2013) ^[3]
S(U+Th) [TNU]	9.7 ± 1.3	13.7 ± 2.5	2.2 ± 2.2	8.7	34.3 ± 3.6	43.5 ± 13.7

[1] Fiorentini et al. – 2012 // [2] Huang, Y., et al. - 2013 - arXiv:1301.0365v2 // [3] Borexino collaboration - Physics Letters B 722 - 2013

A crustal 3D model surrounding SNO+

- **SNO+** is a 1kton LS detector located in Ontario (Canada) in the Superior Province, one of the world's largest Archean cratons
- We modeled the crust of the six 2° x 2° crustal tiles (**440 km x 460 km)** for predicting geoneutrino signal
- The goal was to define the geometry of **LC**, **MC** and 7 main reservoirs of the **UC**, assigning them U and Th abundances
- We digitized **velocity contours** (6.6, 6.8 and 8.0 km/s) in order to extract **depth** of the top of MC (TMC), LC (TLC) and Moho Discontinuity (MD)

	Latitude	Longitude	Depth	
0	46.85 °	- 81.78 °	18.4 km	
0	46.85 °	- 81.78 °	27.7 km	L
	46.85 °	- 81.78 °	47.6 km	

Modeling the geophysical discontinuities surfaces

ORDINARY KRIGING: the value of the depth in **unobserved locations** is estimated from **input data points** taking into account the **spatial continuity** of the variables.

Modeling the geophysical discontinuities surfaces

The geophysical uncertainties at SNO+

• For the first time the **masses** of the main crustal reservoirs containing U and Th are estimated together with their uncertainties in the region surrounding SNO+.

	CRUST 1.0*	Huang et al. 2014			
	M [10 ¹⁸ kg]	Volume [10 ⁶ km ³]	ρ [g/cm ³]	M [10 ¹⁸ kg]	
UC	6.6	4.2 ± 0.2	2.73 ± 0.08	11.5 ± 0.6	
MC	8.1	1.3 ± 0.1	2.96 ± 0.03	3.8 ± 0.3	
LC	8.0	3.2 ± 0.2	3.08 ± 0.06	9.9 ± 0.6	
Total	22.7	8.7 ± 0.5	-	25.2 ± 1.6	

- The relative uncertainties of the reservoirs masses are of $\sim 6\%$.
- Together with uncertainties of U and Th abundances these results are crucial for a reliable estimation of geoneutrino signal in SNO+.

^{*} Laske et al. [2013] at http://igppweb.ucsd.edu/~gabi/rem.html

Geoneutrino signal at SNO+ from the local crust

- After the refinement, the regional geoneutrino signal expected at SNO+ decreases from **18.9** $^{+3.5}$ $_{-3.3}$ TNU (Huang et al. 2013) to **15.6** $^{+5.3}$ $_{-3.4}$ TNU (Huang et al. 2014).
- The Huronian Supergroup is predicted to be the dominant source of the geoneutrino signal and the primary source of the large uncertainty on the local predicted geoneutrino signal.

Lithologic unit of UC	Vol. (%)	U (ppm)	Th (ppm)	S(U+Th) [TNU]
Tonalite/Tonalite gneiss (Wawa-Abitibi)	60.6	0.7 +0.5 -0.3	3.1 ^{+2.3} _{-1.3}	2.2 ^{+1.4} _{-0.9}
Central Gneiss Belt (Grenville Province)	30.2	2.6 +0.4 -0.4	5.1 ^{+6.0} _{-2.8}	2.1 ^{+0.4} -0.3
(Meta)volcanic rocks (Abitibi sub-province)	2.9	0.4 +0.4 -0.2	1.3 ^{+1.2} _{-0.6}	0.02 +0.01 -0.01
Paleozoic sediments (Great Lakes)	1.3	2.5 +2.0 -1.1	4.4 ^{+1.6} _{-1.2}	0.05 +0.04 -0.02
Granite or granodiorite (Wawa-Abitibi)	2.2	2.9 ^{+1.6} _{-1.0}	19.9 ^{+8.4} _{-6.0}	0.5 +0.2 -0.1
Huronian Supergroup, Sudbury Basin	2.7	4.2 ^{+2.9} _{-1.7}	11.1 +8.2 -4.8	7.3 +5.0 -3.0
Sudbury Igneous Complex	0.1	2.3 +0.2 -0.2	10.6 +0.7 -0.7	0.8 +0.1 -0.1

Focusing on close crust

Contribution to the crustal geoneutrino signal48 %26 %26 %26 %

Bellini G., Bonadiman C., Boraso R., Carmignani L., Coltorti M.,, Di Carlo G., Ferrari N., Fiorentini G., Ianni A. Ludhova L., Morsilli M.,, Nisi S.,, Ricci B., Miramonti L., Riva A., Rusciadelli G.,, Tassinari R.,, Tomei C., Korga G., Suvorov Y., Strati V., Baldoncini B., Lissia M., Xhixha G., Callegari I., Dye S., Smirnov O., McDonough W. F., Rudnick R., Huang Y., Fogli G. L., Rotunno A. M., Lisi E., Shirey S. B., Chubakov S., Vannucci R., ...

