

SUMMER INSTITUTE: USING PARTICLE PHYSICS TO UNDERSTAND AND IMAGE THE EARTH

11-21 July 2016 Gran Sasso Science Institute

Volcano structure and eruption

Giovanni Macedonio

Istituto Nazionale di Geofisica e Vulcanologia Osservatorio Vesuviano, Napoli, Italy

L'Aquila, July 11-21, 2016

Summary

An example: Mt. St. Helens (Washington, USA)

Volcano structure

Eruption processes and modeling (Vesuvius, Etna)

- Magma chamber and conduit
- Volcanic eruption columns
- Ash dispersal
- Pyroclastic flows
- Lava flows

Mt. St. Helens (Washington, USA) in 1973

(photo National Geographic)

Mt. St. Helens on April 27, 1980

Look at the strong deformation!

David Johnston USGS 10 km from the crater (died on May 18, 1980)

G. Macedonio (INGV)

Mt. St. Helens eruption May 18, 1980

Landslide followed by a lateral blast

Mt. St. Helens eruption May 18, 1980

G. Macedonio (INGV)

The eruption of Mt. St. Helens May 18, 1980

Effect of an eruption on the volcanic structure

Before the eruption

After the eruption

Two years later (May 19, 1982)

(By Lyn Topinka, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3158771)

G. Macedonio (INGV)

Volcano structure and eruptior

Types of volcanic eruptions

Merapi, Indonesia, 2010 (ash fallout)

Etna, 2006 (lava flow)

Merapi, 2010 (pyroclastic flows)

Etna, 2002 (lava flow)

G. Macedonio (INGV)

The structure of a volcano (focus on Vesuvius)

Vesuvius is an active volcano

- Last eruption occurred in 1944
- Now the conduit is closed
- Monitored 24/24 by INGV

Vesuvius and its surroundings

More than 550,000 people live in the "Red Zone"

Knowledge of the internal structure of a volcano

The first studies of Kircher in 1638 (Vesuvius)

G. Macedonio (INGV)

What is the internal structure of a volcano ?

Images (from google: "internal structure of volcano")

What is the internal structure of a volcano ?

Images (from google: "internal structure of volcano")

The internal structure of Vesuvius

Studies based on the natural seismicity

• Typical magnitude $M_L < 2.0$

(from D'Auria et al., Annals of Geophysics, 2013)

• Largest earthquake $M_L = 3.6$

The internal structure of Vesuvius

High resolution passive seismic tomography (300-500 m)

P-wave velocity structure

- Based on simultaneous inversion of the 3-D velocity structure and the earthquake location
- Data from 2139 earthquakes recorded from minimum 7, up to 19 stations (8600 P-waves, 1900 S-wave readings)
- Magmatic bodies inside the investigated volume were not found

⁽modified after Scarpa et al., 2002)

Active seismic tomography of Vesuvius

TomoVes-94 and TomoVes-1996 experiments

Active seismic tomography of Vesuvius

TomoVes-94 and TomoVes-1996 experiments

- The high-V_p body below the volcano is interpreted as a solidified magma body
- No clear low- V_p body exists at shallow depth (<2.5km). No fresh magma?</p>

(modified from Di Stefano and Chiarabba, 2002)

Active seismic tomography of Vesuvius

The MAREVES-1997 experiment

- 1800 shots off-shore (along line F)
- 25 temporary seismic stations + permanent stations of the Osservatorio Vesuviano network

Active seismic tomography at Vesuvius

The MAREVES-1997 experiment

- Found the top of a magmatic body at 8 km depth, at least 400 km²
- Thickness of the magmatic body not constrained

G. Macedonio (INGV)

Volcano structure and eruption

The internal structure of Vesuvius

Gravimetric field inversion

- About 300 m spatial resolution
- Model misfit \approx 5%

(from Cella et al., JVGR, 2007)

The internal structure of Vesuvius

Electric resistivity

- Work still in progress
- Total profile length 7 km
- Spacing between electrodes 40 cm
- Reach 500 m depth

(Finizola et al., 2014)

Observations of the upper part of Vesuvius

(from Imbò, 1949)

Observations of the upper part of Vesuvius

Vesuvius crater in 1944

Vesuvius crater today

(from Imbò, 1949)

Muon radiography

The MU-RAY experiment at Vesuvius

Mounting the Japanes detector, 2009-2010

G. Macedonio (INGV)

Volcano structure and eruption

Results from the MU-RAY experiment

G. Macedonio (INGV)

The MURAVES Project

INFN, INGV, Universities of Napoli and Florence (Italy)

• The prototype under test

Volcano structure and eruption processes

G. Macedonio (INGV)

Magma chamber-conduit system

G. Macedonio (INGV)

Volcano structure and eruption

L'Aquila, July 11-21, 2016 27 / 61

Simple magma chamber-conduit model

(Macedonio et al., 2005)

Magma chamber (hydrostatic)

$$\frac{\mathrm{d}P}{\mathrm{d}z} = -\rho g$$

Conduit (steady state, multiphase flow)

$$\frac{d}{dz}(\rho v) = 0 \text{ (mass balance)}$$

$$\rho v \frac{dv}{dz} = -\frac{dP}{dz} - \rho g - \frac{4f}{D} \rho \frac{v^2}{2} \text{(momentum balance)}$$

Constitutive equations

Solub (H₂O) =
$$k\sqrt{P}$$
; $\rho = \rho(P)$
 $f = \frac{16}{Re}$ non fragmented
 $f \simeq 0$ fragmented magma
Fragmentation at $\varepsilon_{gas} \ge 0.7$

Water solubility in magma

Experimental data (trachyte from Campi Flegrei)

(modified from Di Matteo et al., JVGR, 2004)

Water solubility in magma

- Depends on pressure, temperature and composition
- Thermodynamic models are available for H₂O e CO₂ (eg: Papale et al., Chem. Geol., 2006)

Physical properties of magma

Viscosity of the liquid phase

- Important effect of temperature
- Important effect of dissolved H₂O
- Vogel-Fulcher-Tamman (VFT) equation (Misiti et al., 2011)

$$\log \mu = a + rac{b}{(T-c)} + rac{d}{(T-e)} \cdot \exp\left(g \cdot rac{w}{T}
ight)$$

Effect of crystals and bubbles on magma viscosity

Einstein-Roscoe equation

$$\mu = \frac{\mu_0}{(1 - \phi/\phi_0)^{2.5}}$$

- μ_0 crystals/bubbles free viscosity
- ϕ crystals/bubbles volumetric fraction
- ϕ_0 "critical" volumetric fraction (≈ 0.7)

At high crystal contents fluid is no more Netwonian (eg: becomes Binghamian)

Magma fragmentation

Empirical model

 Magma fragments when bubble volume reaches a critical value (φ ≈ 70%)

Model based on the glass transition

 Magma fragments at low temperatures and/or rapid decompression

Glass transition

(from Dingwell, 1996)

Magma chamber-conduit system: model results

(modified after Macedonio et al., 2005)

Magma chamber-conduit model

(Macedonio et al., 2005)

Plinian eruptions

Eruption column

Lascar, 1993

Eruption column

(modified from Folch et al., 2016)

G. Macedonio (INGV)

Modeling Plinian columns

Model based on the Buoyant Plume Theory (Morton et al., 1956)

(modified from Woods, 1995)

Simplified model (based on the Buoyant Plume Theory)

$$M = M_{\rho} + M_{a} + M_{w} \tag{1}$$

$$\frac{lM}{ds} = 2\pi r \rho_a u_e \tag{2}$$

$$\frac{dQ}{ds} = \pi r^2 \left(\rho_a - \rho\right) g \sin \theta + u_a \cos \theta \left(2\pi r \rho_a u_e\right) \qquad (3)$$

$$\frac{dE}{ds} = 2\pi r \rho_a u_e \left(c_a T_a + gz + \frac{1}{2} u_e^2 \right) \tag{4}$$

$$\frac{dM_w}{ds} = 2\pi r \rho_a u_e w_a \tag{5}$$

Plume model results

Conditions for column collapse

- High mass flow rate
- Low gas content

(FPlume model, Folch et al. (2016))

(FPlume model, Folch et al. (2016))

Wind enhances air entrainment and prevents column collapse

Plume models

From the IAVCEI Intercomparison exercise

Num.	Name	Reference author	Model type
1	Puffin	M. Bursik	1D
2	Degruyter	C. Bonadonna and W. Degruyter	1D
3	PlumeMoM	M. de'Michieli Vitturi	1D
4	Devenish	B. Devenish	1D
5	FPluMe	A. Folch	1D
6	PPM	F. Girault	1D
7	Plumeria	L. Mastin	1D
8	PlumeRise	M. Woodhouse	1D
9	Cerminara 1D	M. Cerminara	1D
10	ATHAM	M. Herzog	3D
11	SK-3D	Y.J. Suzuki	3D
12	Cerminara 3D	M. Cerminara	3D
13	PDAC	T. Ongaro	3D

Ash transport and fallout

Umbrella region

Volcanic ash and pumice

Dimension and settling velocity of ash particles

Particles diameter distribution

Settling velocity distribution

$$\frac{\partial C_i}{\partial t} + \nabla (\mathbf{U}C_i) - \frac{\partial (V_s C_i)}{\partial z} = \nabla (K \nabla C_i)$$

- C_i = Ash concentration, t = time
- U = Wind
- *V_s* = Particles settling velocity
- *K* = Atmospheric diffusion coefficients (vortexes, turbulence)

$$\frac{\partial C_i}{\partial t} + \nabla (\mathbf{U}C_i) - \frac{\partial (V_s C_i)}{\partial z} = \nabla (K \nabla C_i)$$

Time

- C_i = Ash concentration, t = time
- U = Wind
- V_s = Particles settling velocity
- *K* = Atmospheric diffusion coefficients (vortexes, turbulence)

$$\frac{\partial C_i}{\partial t} + \nabla (\mathbf{U}C_i) - \frac{\partial (V_s C_i)}{\partial z} = \nabla (K \nabla C_i)$$

Time Wind

- C_i = Ash concentration, t = time
- **U** = Wind
- *V_s* = Particles settling velocity
- *K* = Atmospheric diffusion coefficients (vortexes, turbulence)

$$\frac{\partial C_i}{\partial t} + \nabla (\mathbf{U}C_i) - \frac{\partial (V_s C_i)}{\partial z} = \nabla (K \nabla C_i)$$

Time Wind Fallout

- C_i = Ash concentration, t = time
- U = Wind
- V_s = Particles settling velocity
- *K* = Atmospheric diffusion coefficients (vortexes, turbulence)

- C_i = Ash concentration, t = time
- U = Wind
- V_s = Particles settling velocity
- K = Atmospheric diffusion coefficients (vortexes, turbulence)

Example of ash dispersal model (FALL3D)

Example of simulation at Mt. St. Helens

Simulated deposit

The secondary maximum is due to particle aggregation

Application for hazard assessment at Vesuvius

Probability of a loading of 300 kg/m²

Yellow Zone of Vesuvius (Protezione Civile, 2015)

- Simulations of ash deposits based on 20 years of daily wind profiles
- The 5% probability contour line of 300 kg/m² ash loading was selected for delimiting the hazard zone

Available volcanic ash dispersal models

Num.	Name	Туре
1	ASH3D	Eulerian
2	ATHAM	Eulerial
3	FALL3D	Eulerial
4	FLEXPART	Lagrangian
5	HAZMAP	Eulerian/Analytical
6	HYSPLIT	Hybrid
7	JMA-GATM and JMA-RATM	Lagrangian
8	MLDP0	Lagrangian
9	MOCAGE	Eulerian
10	NAME	Hybrid
11	PUFF	Lagrangian
12	TEPHRA2	Eulerian/Analytical
13	VOL-CALPUFF	Hybrid

Pyroclastic flows

G. Macedonio (INGV)

Pyroclastic flows

Pyroclastic flow (Montserrat 2001)

G. Macedonio (INGV)

Pyroclastic flows (multiphase systems) Model equations

a

(Esposti Ongaro et al., 2007, 2008, 2011; Neri et al., 2003, 2007)

Mass balance

Gas: Particelle:

$$\frac{\partial}{\partial t} \varepsilon_g \rho_g + \nabla \cdot (\varepsilon_g \rho_g \mathbf{v}_g) = 0$$
$$\frac{\partial}{\partial t} \varepsilon_k \rho_k + \nabla \cdot (\varepsilon_k \rho_k \mathbf{v}_k) = 0 \qquad k = 1, 2, \dots N \qquad \varepsilon_g + \sum_{k=1}^N \varepsilon_k = 1$$

N

Momentum balance

a

Gas

$$\begin{aligned} \mathbf{Gas:} & \qquad \frac{\partial}{\partial t} \varepsilon_g \rho_g \mathbf{v}_g + \nabla \cdot (\varepsilon_g \rho_g \mathbf{v}_g \mathbf{v}_g) = -\varepsilon_g \nabla P_g + \nabla \mathbf{\Gamma}_g + \varepsilon_g \rho_g \mathbf{g} + \sum_{k=1}^{N} D_{g,k} (\mathbf{v}_k - \mathbf{v}_g) \end{aligned}$$

$$\begin{aligned} \mathbf{Particelle:} & \qquad \frac{\partial}{\partial t} \varepsilon_k \rho_k \mathbf{v}_k + \nabla \cdot (\varepsilon_k \rho_k \mathbf{v}_k \mathbf{v}_k) = -\varepsilon_k \nabla P_g + \nabla \mathbf{\Gamma}_k + \varepsilon_k \rho_k \mathbf{g} - D_{g,k} (\mathbf{v}_k - \mathbf{v}_g) + \sum_{k=1}^{N} D_{k,j} (\mathbf{v}_j - \mathbf{v}_k) \end{aligned}$$

Energy balance

Gas:

i

$$\frac{\partial}{\partial t}\varepsilon_g \rho_g h_g + \nabla \cdot (\varepsilon_g \rho_g h_g \mathbf{v}_g) = \varepsilon_g \left(\frac{\partial P_g}{\partial t} + \mathbf{v}_g \cdot \nabla P_g\right) + \nabla \cdot (k_{gs}\varepsilon_g \nabla T_g) + \sum_{k=1}^N Q_k (T_k - T_g)$$

Particelle:

$$\frac{\partial}{\partial t}\varepsilon_k\rho_kh_k + \nabla \cdot (\varepsilon_k\rho_kh_k\mathbf{v}_k) = \nabla \cdot (k_{ke}\varepsilon_k\nabla T_k) - Q_k(T_k - T_g); k = 1, 2...N$$

 $k, j = 1, 2, \dots N$

Pyroclastic flows (multiphase systems)

Model equations

(Esposti Ongaro et al., 2007, 2008, 2011; Neri et al., 2003, 2007)

Mass balance	$\frac{\partial}{\partial t}\varepsilon_{g}\rho_{g} + \nabla \cdot (\varepsilon_{g}\rho_{g}\mathbf{v}_{g}) = 0$	
Gas: Particelle:	$\frac{\partial}{\partial t} \varepsilon_{g} \rho_{g} + \nabla (\varepsilon_{g} \rho_{g} \varepsilon_{g}) = 0$ $\frac{\partial}{\partial t} \varepsilon_{k} \rho_{k} + \nabla (\varepsilon_{k} \rho_{k} \mathbf{v}_{k}) = 0$ $k = 1, 2, \dots N$ $\varepsilon_{g} + \sum_{k=1}^{N} \varepsilon_{k} = 1$	

Momentum balance

Gas:

$$\frac{\partial}{\partial t}\varepsilon_{g}\rho_{g}\mathbf{v}_{g} + \nabla \cdot (\varepsilon_{g}\rho_{g}\mathbf{v}_{g}\mathbf{v}_{g}) = -\varepsilon_{g}\nabla P_{g} + \nabla \mathbf{I}_{g} + \varepsilon_{g}\rho_{g}\mathbf{g} + \sum_{k=1}^{N} D_{g,k}(\mathbf{v}_{k} - \mathbf{v}_{g})$$

Particelle:

$$\frac{\partial}{\partial t}\varepsilon_k\rho_k\mathbf{v}_k + \nabla\cdot(\varepsilon_k\rho_k\mathbf{v}_k\mathbf{v}_k) = -\varepsilon_k\nabla P_g + \nabla\mathbf{\Gamma}_k + \varepsilon_k\rho_k\mathbf{g} - D_{g,k}(\mathbf{v}_k - \mathbf{v}_g) + \sum_{k=1}^N D_{k,j}(\mathbf{v}_j - \mathbf{v}_k)$$

Energy balance

Gas:

 $\frac{\partial}{\partial t}\varepsilon_g \rho_g h_g + \nabla \cdot (\varepsilon_g \rho_g h_g \mathbf{v}_g) = \varepsilon_g \left(\frac{\partial P_g}{\partial t} + \mathbf{v}_g \cdot \nabla P_g\right) + \nabla \cdot (k_{ge}\varepsilon_g \nabla T_g) + \sum_{k=1}^N \mathcal{Q}_k (T_k - T_g)$

Particelle:

$$\frac{\partial}{\partial t}\varepsilon_k\rho_k h_k + \nabla \cdot (\varepsilon_k\rho_k h_k \mathbf{v}_k) = \nabla \cdot (k_{ke}\varepsilon_k \nabla T_k) - \mathcal{Q}_k (T_k - T_g); k = 1, 2...N$$

Pyroclastic flows (multiphase systems)

Model equations

(Esposti Ongaro et al., 2007, 2008, 2011; Neri et al., 2003, 2007) Mass balance 2

Gas:
Particelle:

$$\frac{\partial}{\partial t} \varepsilon_k \rho_k + \nabla \cdot (\varepsilon_k \rho_k \mathbf{v}_k) = 0 \qquad k = 1, 2, \dots N \qquad \varepsilon_k + \sum_{k=1}^N \varepsilon_k = 1$$

Momentum balance

Ga

$$\frac{\partial}{\partial t}\varepsilon_{g}\rho_{g}\mathbf{v}_{g} + \nabla \cdot (\varepsilon_{g}\rho_{g}\mathbf{v}_{g}\mathbf{v}_{g}) = -\varepsilon_{g}\nabla P_{g} + \nabla \mathbf{\Gamma}_{g} + \varepsilon_{g}\rho_{g}\mathbf{g} + \sum_{k=1}^{N} D_{g,k}(\mathbf{v}_{k} - \mathbf{v}_{g})$$

$$\frac{\partial}{\partial t}\varepsilon_k\rho_k\mathbf{v}_k + \nabla\cdot(\varepsilon_k\rho_k\mathbf{v}_k\mathbf{v}_k) = -\varepsilon_k\nabla P_g + \nabla\mathbf{\Gamma}_k + \varepsilon_k\rho_k\mathbf{g} - D_{g,k}(\mathbf{v}_k - \mathbf{v}_g) + \sum_{k=1}^N D_{k,j}(\mathbf{v}_j - \mathbf{v}_k)$$

$$k, j = 1, 2, \dots, N$$

 $\frac{\partial}{\partial t}\varepsilon_{g}\rho_{g}h_{g} + \nabla \cdot (\varepsilon_{g}\rho_{g}h_{g}\mathbf{v}_{g}) = \varepsilon_{g}\left(\frac{\partial P_{g}}{\partial t} + \mathbf{v}_{g} \cdot \nabla P_{g}\right) + \nabla \cdot (k_{gg}\varepsilon_{g}\nabla T_{g}) + \sum_{i}^{N} \mathcal{Q}_{k}(T_{k} - T_{g})$

Particelle:

$$\frac{\partial}{\partial t}\varepsilon_k\rho_k h_k + \nabla \cdot (\varepsilon_k\rho_k h_k \mathbf{v}_k) = \nabla \cdot (k_{ke}\varepsilon_k \nabla T_k) - \mathcal{Q}_k(T_k - T_g); k = 1, 2...N$$

Pyroclastic flows (multiphase systems)

Model equations

(Esposti Ongaro et al., 2007, 2008, 2011; Neri et al., 2003, 2007) Mass balance $\frac{\partial}{\partial t} \varepsilon_{g} \rho_{g} + \nabla \cdot (\varepsilon_{g} \rho_{g} \mathbf{v}_{g}) = 0$ $\frac{\partial}{\partial t} \varepsilon_{k} \rho_{k} + \nabla \cdot (\varepsilon_{k} \rho_{k} \mathbf{v}_{k}) = 0 \qquad k = 1, 2, \dots N \qquad \varepsilon_{g} + \sum_{i=1}^{N} \varepsilon_{k} = 1$ Gas: Particelle: Momentum balance $\frac{\partial}{\partial t} \varepsilon_g \rho_g \mathbf{v}_g + \nabla \cdot (\varepsilon_g \rho_g \mathbf{v}_g \mathbf{v}_g) = -\varepsilon_g \nabla P_g + \nabla \mathbf{\Gamma}_g + \varepsilon_g \rho_g \mathbf{g} + \sum_{k=1}^{N} D_{g,k} (\mathbf{v}_k - \mathbf{v}_g)$ Gas: Particelle: $\frac{\partial}{\partial t}\varepsilon_k\rho_k\mathbf{v}_k + \nabla \cdot (\varepsilon_k\rho_k\mathbf{v}_k\mathbf{v}_k) = -\varepsilon_k\nabla P_g + \nabla \mathbf{\Gamma}_k + \varepsilon_k\rho_k\mathbf{g} - D_{g,k}(\mathbf{v}_k - \mathbf{v}_g) + \sum_{k=1}^N D_{k,j}(\mathbf{v}_j - \mathbf{v}_k)$ $k, i = 1, 2, \dots N$ Energy balance $\frac{\partial}{\partial \epsilon} \varepsilon_g \rho_g h_g + \nabla \cdot (\varepsilon_g \rho_g h_g \mathbf{v}_g) = \varepsilon_g \left(\frac{\partial P_g}{\partial \epsilon} + \mathbf{v}_g \cdot \nabla P_g \right) + \nabla \cdot (k_{ge} \varepsilon_g \nabla T_g) + \sum_{k=0}^{N} Q_k (T_k - T_g)$ Gas: Particelle: $\frac{\partial}{\partial t}\varepsilon_k\rho_k h_k + \nabla \cdot (\varepsilon_k\rho_k h_k \mathbf{v}_k) = \nabla \cdot (k_{ke}\varepsilon_k\nabla T_k) - Q_k(T_k - T_g); k = 1, 2...N$

Pyroclastic flows

Example of 3D simulation (INGV Pisa)

Evento Sub-Pliniano (5x10^7 kg/s): wt% di massa collassata

(from Esposti Ongaro et al., 2008)

Example of pyroclastic flows simulation

(simulation C-2D, from Esposti Ongaro et al. (2008)

t [s]

G. Macedonio (INGV)

Lava flows

Lava flows

Lava flows

Principal parameters

- Topography
- Magma rheology
- Mass eruption rate

Characteristics of lava flows

- Free surface
- Capacity to surmount barriers
- Cooling
- Formation of channels and tunnels

General model (deterministic)

3D, time-dependent

Continuity and Navier-Stokes equations

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \rho + \nabla (\mu \nabla \mathbf{u}) + \rho \mathbf{g}$$
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0}$$

where:

u = velocity

 $\rho = \text{density}$

 μ = viscosity (temperature dependent)

p = pressure

g = gravity constant

Depth averaged equations

2D, time-dependent

Simplifying assumptions of 2D models

- Fluid is approximated as a thin layer
- Vertical velocity component is neglected
- Navier-Stokes and continuity equations are integrated in z (become 2D equations)

Depth averaged equations

Continuity equation

$$\frac{\partial h}{\partial t} + \frac{\partial (Uh)}{\partial x} + \frac{\partial (Vh)}{\partial y} = 0$$

Momentum balance equations

$$\frac{\partial(Uh)}{\partial t} + \frac{\partial(U^2h + gh^2/2)}{\partial x} + \frac{\partial(UVh)}{\partial y} = -gh\frac{\partial H}{\partial x} - \gamma U$$
$$\frac{\partial(Vh)}{\partial t} + \frac{\partial(UVh)}{\partial x} + \frac{\partial(V^2h + gh^2/2)}{\partial y} = -gh\frac{\partial H}{\partial y} - \gamma V$$

h = fluid thickness; H = topography; U,V = x,y components of the velocity; γ = friction coefficient (viscous effects) NOTE: Topography and viscous effects are "source terms"

G. Macedonio (INGV)

Volcano structure and eruptior

L'Aquila, July 11-21, 2016 57 / 61

G. Macedonio (INGV)

Volcano structure and eruptior

L'Aquila, July 11-21, 2016 57 / 61

G. Macedonio (INGV)

Volcano structure and eruptior

L'Aquila, July 11-21, 2016 57 / 61

G. Macedonio (INGV)

Volcano structure and eruptior

L'Aquila, July 11-21, 2016 57 / 61
Simulation 1D

Simulation 1D

G. Macedonio (INGV)

Volcano structure and eruptior

SWELAVA model, INGV Napoli (Costa and Macedonio, 2005)

G. Macedonio (INGV)

Volcano structure and eruption

SWELAVA model, INGV Napoli (Costa and Macedonio, 2005)

G. Macedonio (INGV)

Volcano structure and eruption

SWELAVA model, INGV Napoli (Costa and Macedonio, 2005)

G. Macedonio (INGV)

Volcano structure and eruption

SWELAVA model, INGV Napoli (Costa and Macedonio, 2005)

G. Macedonio (INGV)

Volcano structure and eruption

SWELAVA model, INGV Napoli (Costa and Macedonio, 2005)

G. Macedonio (INGV)

Volcano structure and eruption

SWELAVA model, INGV Napoli (Costa and Macedonio, 2005)

G. Macedonio (INGV)

Volcano structure and eruption

SWELAVA model, INGV Napoli (Costa and Macedonio, 2005)

G. Macedonio (INGV)

Volcano structure and eruption

SWELAVA model, INGV Napoli (Costa and Macedonio, 2005)

G. Macedonio (INGV)

Volcano structure and eruption

SWELAVA model, INGV Napoli (Costa and Macedonio, 2005)

G. Macedonio (INGV)

Volcano structure and eruption

Etna 1991 Comparison with observations

Simulation

Duration: few CPU minutes

Observation

Duration: some months

Main lava flow models

Num.	Name	Model type	Authors
1	SCIARA	Cellular automata	Crisci et al. (1982)
2	Ishihara	Cellular automata	Ishiara et al. (1989)
3	DANIMIX	Cellular automata	Miyamoto & Sasaki (1997)
4	FLOWGO	Steady-state 1D	Harris & Rowland (2001)
5	DOWNFLOW	Probabilistic	Favalli et al. (2005)
6	LavaSIM	Deterministic 3D	Hidaka et al. (2005)
7	SLAG	Deterministic 2D	Macedonio & Costa (2005)
8	MAGFLOW	Cellular Automata	Vicari et al. (2007)
9	VOLCFLOW	Deterministic 2D	Kelfoun (2015)

Bibliography

- Auger, E., Gasparini, P., Virieux, J., and Zollo, A.: Seismic evidence of an extended magmatic sill under Mt. Vesuvius, Science, 294, 1510–1512, 2001.
- Costa, A. and Macedonio, G.: Numerical simulation of lava flows based on depth-averaged equations, Geophys. Res. Lett., 32, L05 304, doi:10.1029/2004GL021817, 2005.
- Costa, A., Sparks, R. S. J., Macedonio, G., and Melnik, O.: Effects of wall-rock elasticity on magma flow in dykes during explosive eruptions, Earth Planet. Sci. Lett., 288, 455–462, doi:10.1016/j.epsl.2009.10.006, 2009.
- Di Stefano, R. and Chiarabba, C.: Active source tomography at Mt. Vesuvius: Constraints for the magmatic system, J. Geophys. Res., 107, 2278, doi:10.1029/2001JB000792, 2002.
- Dingwell, D. B.: Volcanic dilemma: Flow or blow ?, Science, 273, 1054–1055, doi:10.1126/science.273.5278.1054, 1996.
- Esposti Ongaro, T., Clarke, A. B., Neri, A., Voight, B., and Widiwijayanti, C.: Fluid dynamics of the 1997 Boxing Day volcanic blast on Montserrat, West Indies, J. Geophys. Res., 113, B03 211, doi:10.1029/2006JB004898, 2008.
- Esposti Ongaro, T., Neri, A., Menconi, G., de'Michieli Vitturi, M., Marianelli, P., Cavazzoni, C., Erbacci, G., and Baxter, P. J.: Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius, J. Volcanol. Geotherm. Res., 178, 378–396, doi:10.1016/j.jvolgeores.2008.06.036, 2008.
- Finizola, A., Ricci, T., Poret, M., Delcher, E., Peltier, A., Antoine, R., Bernard, J., Boudoire, G., Brothelande, E., Fanizza, G., Fargier, Y., Gailler, L., Gueguen, E., Gusset, R., Matera, A., Mezon, C., Piscielli, S., Portal, A., Rizzo, E., Rossi, M., Calamita, G., Bellucci Sessa, E., and Nave, R.: Fluid circulation at Somma-Vesuvius volcanic complex inferred by electrical resistivity tomography, self-potential, temperature and soil degassing, in: MED-SUV 1th year meeting, Nicolosi (catania) 7-9 July 2014, Miscellanea INGV no. 23, pp. 52–53, INGV, 2014.
- Folch, A., Costa, A., and Macedonio, G.: FALL3D: A computational model for transport and deposition of volcanic ash, Comput. Geosci., 35, 1334–1342, doi:10.1016/j.cageo.2008.08.008, 2009.
- Folch, A., Costa, A., and Macedonio, G.: FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation, Geosci. Model Dev., 9, 431–450, doi:10.5194/gmd-9-431-2016, 2016.
- Macedonio, G., Neri, A., Martí, J., and Folch, A.: Temporal evolution of flow conditions in sustained magmatic explosive eruptions, J. Volcanol. Geotherm. Res., 143, 153–172, doi:10.1016/j.jvolgeores.2004.09.015, 2005.
- Misiti, V., Vetere, F., Freda, C., Scarlato, P., Behrens, H., Mangiacapra, A., and Dingwell, D. B.: A general viscosity model of Campi Flegrei (Italy) melts, Chem. Geol., 290, 50–59, doi:10.1016/j.chemgeo.2011.08.010, 2011.
- Morton, B. R., Taylor, G., and Turner, J. S.: Turbulent gravitational convection from mantained and instantaneous sources, Proc. Roy. Soc. London, Ser. A, 234, 1–23, 1956.
- Scarpa, R., Tronca, F., Bianco, F., and Del Pezzo, E.: High resolution velocity structure beneath Mt. Vesuvius from seismic array data, Geophys. Res. Lett., 29, 2040–2043, doi:10.1029/2002GL015576, 2002.
- Woods, A. W.: The dynamics of explosive volcanic eruptions, Rev. Geophys., 33, 495-530, 1995.