### **Directionality in neutrino detection**

Research Center for Neutrino Science, Tohoku University Hiroko Watanabe

### Outline



### Outline



#### Where we are?



### Outline



#### **Neutrino Detectors**





#### What do you want to measure?











#### **Neutrino Detectors**



















#### **Neutrino Detectors : target**









2/32

#### Water/Ice

#### Liquid Scintillator









The



#### **Neutrino Detectors : reaction**



### Water vs Liquid Scintillator

|                | Water                    | Liquid Scintillator (LS)                                             |
|----------------|--------------------------|----------------------------------------------------------------------|
| experiments    | Super-K (Ice-Cube, etc.) | KamLAND (Borexino,<br>SNO+, JUNO, etc.)                              |
| target volume  | 50,000 t                 | 1,000 t                                                              |
| light          | Cherenkov                | Scintillation                                                        |
| light yield    | 6 p.e./MeV               | 400 p.e./MeV                                                         |
|                | higher energy            | lower energy                                                         |
| reaction       | scattering               | scattering/ <sup>background</sup><br>inverse β decay $\underbrace{}$ |
| directionality |                          |                                                                      |

### **Directional Sensitivity in Water**<sup>4/32</sup>

#### Solar neutrino measurement with Super-Kamiokande



- Ling imaging water Cherenkov detector can have directional sensitivity.
- They can <u>separate</u> solar neutrino event from backgrounds.

### **Neutrino Detection in LS**



#### Advantages (

-2 flashes have space and time correlations

-Eliminates background

Advantages (

#### -2 flashes have space and time correlations

- Eliminates background



 $v_e$  P  $v_e$  prompt  $\Delta T=200\mu sec n$ thermal diffusion delayed  $v_e$   $\gamma$  (2.2MeV)

"delayed coincidence"

#### Advantages (

#### -2 flashes have space and time correlations

-Eliminates background



"delayed coincidence"





### **Directional Sensitivity in LS**

|                | Water Liquid Scintillator (LS) |                                                        |  |
|----------------|--------------------------------|--------------------------------------------------------|--|
| experiments    | Super-K (Ice-Cube, etc.)       | KamLAND ( <u>Borexino,</u><br>SNO+, JUNO, etc.)        |  |
| target volume  | 50,000 t                       | 1,000 t                                                |  |
| light          | Cherenkov                      | Scintillation                                          |  |
| light yield    | 6 p.e./MeV                     | 400 p.e./MeV                                           |  |
|                | higher energy                  | lower energy                                           |  |
| reaction       | scattering                     | scattering/ <sup>background</sup><br>inverse β decay 🙂 |  |
| directionality |                                |                                                        |  |

- ◆ Make the impossible, possible!
- Breakthrough technology for "next generation" detector.

### Outline



#### What we can measure?

#### 1. large size detector (1kt~) geo-neutrino

- distinguish mantle from crust contributions
- separate reactor anti-neutrinos





#### asure?

9/32

nova detection

- improvement of oscillation parameter measurement



### What we can measure?

#### 2. small size detector (~200kg) our first target

- <u>establishment of new technology</u> using anti-neutrino sources (reactor neutrino, radioactive source)
- application to reactor monitor

example) Japan @Kashiwazaki-Kariwa nuclear power plant

10/32



 $1500 \ \overline{\nu}_e \ events/day$ 

### Outline



### How to measure? : key point <sup>11/32</sup>



#### <u>key point</u>

"neutron" retains information of anti-neutrino direction

#### How to measure? : theoretical calculation

PHYSICAL REVIEW D, VOLUME 60, 053003

#### Angular distribution of neutron inverse beta decay, $\overline{\nu}_e + p \rightarrow e^+ + n$

P. Vogel<sup>\*</sup> and J. F. Beacom<sup>†</sup>

Physics Department 161-33, California Institute of Technology, Pasadena, California 91125 (Received 1 April 1999; published 27 July 1999)

Improved estimate of the cross section for inverse beta decay

Artur M. Ankowski<sup>\*</sup> Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061, USA (Dated: January 26, 2016) arXiv:1601.06169

Theoretical calculation gives us "ee".

 $\rightarrow$  " $\theta$ n" is determined by the conservation of momentum.



### How to measure? : prompt signal <sup>13/32</sup>



### How to measure? : delayed signal <sup>14/32</sup>

delayed : neutron capture signal





forward recoil neutron retains information of the anti-neutrino direction

#### How to measure? : answer!



# $\vec{\mathbf{r}}$ correlates well with $\overline{\nu_e}$ direction

15/32



#### measure <u>neutron capture position</u> **before** neutron loses directional information

### **Problems of current LS**



#### Improvements



17/32

I high vertex resolution detector

#### ref) proton 0.3 barn

|                                  | 110 <b>B</b> | 2 <sup>6</sup> Li |
|----------------------------------|--------------|-------------------|
| neutron capture<br>cross section | 3835 barn    | 940 barn          |
| natural abundance                | 19.9 %       | 7.5 %             |

$$n^{+10}B \rightarrow {}^{7}Li^{*} + \alpha(BR = 94\%, Q = 2.3 MeV)$$
$${}^{7}Li^{*} \rightarrow {}^{7}Li + \gamma (E_{\gamma} = 0.48 MeV)$$
$$n^{+10}B \rightarrow {}^{7}Li + \alpha(BR = 6\%, Q = 2.8 MeV)$$

 $n+^{6}Li \rightarrow \alpha + ^{3}H(Q=4.8MeV)$ 

#### <sup>6</sup>Li or <sup>10</sup>B : simulation



### **Angular Resolution**



| e co |                    | Asymmetry | miss-identification rate<br>(θ>90°) |
|------|--------------------|-----------|-------------------------------------|
| De   | <sup>6</sup> Li LS | 0.391     | 30.4%                               |
|      | <sup>10</sup> B LS | 0.148     | 42.6%                               |
|      | KamLAND LS         | 0.079     | 46%                                 |

Asymmetry = 
$$\frac{A_+ - A_-}{A_+ + A_-}$$
  
A : number of event  
 $A_+ \ 0 \le \cos\theta \le 1$   
 $A_- \ -1 \le \cos\theta \le 0$ 

### Outline



#### **Developments**



# <sup>6</sup>Li loaded liquid scintillator Mathematical Science (Secondary Science)

#### **Developments: status**



#### **Developments: status**



### <sup>6</sup>Li loaded LS : prev

#### Bugey (1991~1992)

They observed reactor anti-neutrinos using Li loaded liquid scintillator, NE320

#### NE320

- <sup>6</sup>Li 0.15wt%
- psudocumene base
- <u>chemical instability led ~1% daily</u>
   <u>loss of detected light</u>



#### We have to develop ir



M Abban at al / Neval Tuntu and Math in



principle.

of available photo-multipliers. The length choice has been imposed by the existing shielding castle. Every cell is instrumented at each side by a photo-multiplier (Fig. 1). We have built 3 identical modules, one being installed at the 15 m station, the other two being on top of each other at the 40 m station. Because of the chemical reactivity of the NE320, the only materials we allowed to be in contact with

### <sup>6</sup>Li loaded LS : our method

behavior of Li component
insolvable in oil
solvable in water

mix organic solvent and Li compound aqueous solution with surfactant





23/32

#### - our recipe

| Pseudecumene               | 82 wt%  |
|----------------------------|---------|
| POE(10) octyl-phynyl-ether | 18 wt%  |
| LiBr                       | 31 g/L  |
| PPO                        | 5.4 g/L |
| bis-MSB                    | 0.1 g/L |



We have developed the <sup>6</sup>Li loaded LS by the original method.

### <sup>6</sup>Li loaded LS : progress of our method <sup>24/32</sup>

#### Y.Shirahata Master Thesis

Davs

|           | <sup>6</sup> Li | Light yield<br>(KamLAND LS = 1) | Transparency<br>@400nm | Delayed energy      |
|-----------|-----------------|---------------------------------|------------------------|---------------------|
| target    | > 0.15 wt%      | > 1.0                           | > 100 cm               | better than KamLAND |
| our study | 0.16 wt%        | 1.03 ± 0.03                     | 167.9 ± 4.3 cm         | 540 ± 14.9keV       |



#### **Developments: status**



### High vertex resolution detector <sup>25/32</sup>



- We need high vertex resolution to separate **2 vertexes**.
- required resolution : ~1.5cm
   (ref: Photo Multi Plire (PMT) ~10cm)

#### "Imaging Detector"



### **Imaging Detector**



### **Imaging Detector**



#### **Developments: status**



# 30L Detector : LiLS + Imaging Detector



# **30L Detector : LiLS + Imaging Detector**



# 30/32 **30L Detector : LiLS + Imaging Detector**



### Outline





### Outline



Directional sensitivity will be efficient technology for anti-neutrino measurement, especially geo-neutrino measurement.

- New measurement technologies:
- \* <sup>6</sup>Li loaded liquid scintillator can have good directional sensitivity.
  - We have developed the <sup>6</sup>Li loaded LS by the original method.
- \* 30L detector : test of detection technology
- \*<5 years : Reactor neutrino directional measurement with ~200L size detector

- ✦ Make the impossible, possible!
- Breakthrough technology for "next generation" detector.