

Higgs with top quarks: searches and measurements from the LHC

Lorenzo Bianchini¹ and Michele Pinamonti² ¹ETH Zürich, ²INFN Trieste & SISSA

Pisa, 16-18 maggio 2016

Tuesday, May 17, 16

Overview

EWSB

- Largeness of λ_t suggests a special role of the top quark in EWSB
 - LHC will offer unique chance of measuring it for the next decades
 - ultimate accuracy of 5% may be achievable at HL-LHC
- How to measure it at the LHC?
 - no direct decay into top quarks
 - ► INDIRECT constraints from GGF and $BR(H \rightarrow \gamma \gamma)$

 $\lambda_{\psi} \bar{\psi}_{\mathrm{L}} \psi_{\mathrm{R}} H + h.c.$

- Coupling strength
 - Scalar interactions
 - Conserve flavour

Overview of ttH searches

$H \rightarrow bb$

- large backgrounds from tt+jets
 - tt+bb irreducible
- no single discriminating variable
- mastering top bkg. is the key

Data

····· μ = 1.4

110

120

small BR, but small systematics

• $H \rightarrow WW/ZZ/TT$

ttH

ttZ/\

Others

Fakes

clean signature, but suffering from irreducible SM backgrounds (ttV)

Events / 5 GeV

Runl summary: ttH

	Channel	Experiment	95% U.L.	$\mu^{fit} \pm I\sigma$	References
		ATLAS	< 3.4 (2.2)	1.4 ^{+1.2} -1.2	EPJC 75 (2015) 349 arXiv:1604.0381
	□ → DD	CMS	< 4.1 (3.5)	0.7 ^{+1.9} -1.9	JHEP 09 (2014) 087 CMS, EPJC 75 (2015) 212
-		ATLAS	< 6.7 (4.9)	1.4 ^{+2.1} -1.4	PLB 740 (2015) 222
	$H \rightarrow \gamma \gamma$	CMS	< 7.4 (4.7)	2.7 ^{+2.6} -1.8	JHEP 09 (2014) 087
	H → WW	ATLAS	< 4.7 (2.4)	2.1 ^{+1.4} -1.2	PLB 749 (2015) 519
		CMS	< 6.6 (2.4)	3.7 ^{+1.6} -1.4	JHEP 09 (2014) 087
		ATI	LAS, arXiv:16	504.0381	CMS, JHEP 09 (2014) 087 S $\sqrt{s} = 7$ TeV, 5.0-5.1 fb ⁻¹ ; $\sqrt{s} = 8$ TeV, 19.3-19.7 fb ⁻¹
Include new AH channe	S ttH(H → γγ)	_ ATLAS total statistical	$\mu = 1.2 $ $^{+2.6}_{-1.8}$	$ \begin{array}{c} $	tīH, H \rightarrow bb, $\tau\tau$, $\gamma\gamma$, WW, ZZ $m_{H} = 125.6 \text{ GeV}$ $\mu_{t\bar{t}H} = 2.8^{+1.0}_{-0.9}$ Expected
	$ttH(H \to WW/\tau\tau/ZZ) =$		μ = 2.1 $^{+1.4}_{-1.2}$	+1.1 _ 5	3.4σ (Εχρ: Ι.2σ)
	$t\bar{t}H(H \rightarrow b\bar{b})$	- ++++	$\mu = 1.4 + 1.0 + 1.0 - 1.0$	+0.6 _ 3 - 0.6 _ 2	
	ttH Combination	p: 6.5q)	$\mu = 1.7 {}^{+0.8}_{-0.8}$	+0.5 - 0.5 10 12 0	
			Best fit μ for m	=125 GeV	μ _{tī}

Run2 preliminary: ttH

5

• H→bb

- improved analysis strategy
 - simultaneous deployment of MEM and BDT discriminants
 - boosted top-Higgs category
- sensitivity close to Run I!

• $H \rightarrow WW/ZZ/TT$

- improved fake lepton rejection
- better separation against tt+V
- sensitivity close to Run I!
- Search for $H \rightarrow \gamma \gamma$ statistically limited

ATLAS vs CMS: ttH→bb

	ATLAS	CMS	CMS Run2
Jet p⊤	>25	>30	>30
Jet radius	0.4	0.5	0.4
SL lepton p _T	>25	>30	>25
DIL lepton pT	>25,15	>20,15	>20,15
Additional SL cat.	(4j,2t), (5j,2t)	-	-
Additional DIL cat.	(2j,2b) (>=4j,3t), (3j,2t)	- (>=3j,3t)	- (>=4j,3t), (3j,2t)
Β tagging: ε _b :ε _{light}	70% : 1%	70% : 2%	70% : 1%
Jet flavour definition	parton-matching	parton-matching	(Ghost) hadron-matching
tt+jets splitting	bb,cc, LF	bb, b, cc, LF	bb, b, 2b, cc, LF
tt+bb prediction	POWHEG reweighted to SherpaOL	MG5+PY6	POWHEG+PY8

Run2 issues: tt+jets modeling

ATLAS and CMS see different things when comparing 13 TeV data with "same" MC (Powheg+Pythia)

jet multiplicity

Data/MC in opposite direction (but within syst. band)

Run2 issues: tt+jets modeling

ATLAS and CMS see different things when comparing 13 TeV data with "same" MC (Powheg+Pythia)

• b-tag multiplicity \Rightarrow tt+HF modeling

Run2 issues: tt+jets modeling

- Which MC's are used to model tt+jets?
 - ► ATLAS → Powheg+Pythia6
 - CMS → Powheg+Pythia8
 - ATLAS sees no difference when using Pythia8
 - ATLAS reweights its tt+HF prediction to SherpaOL (NLO accurate)
 - Same Powheg settings, different ME-PS matching options & different PS tunes

9

- What about tt+HF?
 - in YR4 (to be public soon), MG5_aMC@NLO is compared to SherpaOL and HELAC
 - much larger predictions from MG5_aMC@NLO, and in the direction of ATLAS tt+HF excess

Workshop on Heavy Flavour Production:

- ALTAS: <u>link</u>
- CMS: <u>link</u>

tt+bb: experiment

Both experiments have measured 8TeV fiducial cross sections

possibly some underestimation of tt+b, but within uncertainties

Tuesday, May 17, 16

Top+Z/W: a SM measurement

- Irreducible backgrounds for ttH→leptons
 - prompt leptons and b jets
- Measurement of multi-leptonic final states with jets
 - reduces prompt VV background

tt+V: Run I legacy

	ttW obs (exp)	ttZ obs (exp)
ATLAS	5.0σ (3.2 σ)	4.5σ (4.2 σ)
CMS	4.8 σ (3.5σ)	6.4σ (5.7 σ)

 σ_{ttV} measured with 30-40% uncertainty

- statistically dominated
- in agreement with NLO computation

Run2 preliminary: tt+V

- Preliminary ttZ/ttW measurements from ATLAS
 - same precision as in Run-I
 - $\sigma_{ttZ} = 0.9 \pm 0.3 \text{ pb}$ (NLO: 0.76)
 - ttW with 50% uncertainty
 - $\sigma_{ttW} = 1.4 \pm 0.8 \text{ pb} (NLO: 0.57)$

- ... and ttZ from CMS:
 - simpler version of Run I analysis
 - $\sigma_{ttZ} = 1.1 \pm 0.4 \text{ pb}$ (NLO: 0.76)
 - 3.6σ evidence

Top+Higgs: the single-top channel

Search for single top + Higgs

- suppressed in SM ($\sigma_{NLO} \sim 18$ fb)
- enhanced for non-SM couplings
- lifts sign degeneracy in coupling fits
- most analyses optimised fot t-channel (tHq)

2.0

1.5

2.5

 $B(H\rightarrow\gamma\gamma)/B_{e_{H}}(H\rightarrow\gamma\gamma)$

3.0

Run I legacy: Kt

Tuesday, May 17, 16

Exotic searches in t(t)H-like final states

t(t)H-like final states provide typical signatures of BSM physics

high number of b-jets, leptons, and MET

tttt production (E.g. gluino pair production)

"ttbb" and "tHq" final states (E.g. TT→bWtH, H⁺→tb, single T→tH)

ATLAS, JHEP 08 (2015) 105 CMS PRD 93 (2016) 012003 CMS, JHEP 11 (2014) 154 ATLAS-CONF-2016-020 ATLAS-CONF-2016-013 JHEP 03 (2016) 127

- ⇒ we may see ttH-like deviations even for SM top-Higgs coupling
 - with more data, differential measurements will tell apart coupling shifts from other new physics

FCNC from the Yukawa sector

- FCNC are GIM-suppressed in SM
 - ► BR (t → cH) < 10^{-15}

• GIM can be broken in SM extensions

- tree-level currents
 - e.g. 2HDM, Q-singlets, ...
- ...or large loop enhancement
 - for example: BR ~ 10^{-5} in MSSM
- in general, effect of higher-order operators (EFT)

		SM	
	$t \rightarrow uZ$	$8 imes 10^{-17}$	
	$t ightarrow u \gamma$	$3.7 imes10^{-16}$	
	t ightarrow ug	$3.7 imes 10^{-14}$	
	$t \rightarrow u H$	2×10^{-17}	
	$t \rightarrow cZ$	$1 imes 10^{-14}$	
	$\begin{array}{l} t \rightarrow cZ \\ t \rightarrow c\gamma \end{array}$	$1 imes 10^{-14}$ $4.6 imes 10^{-14}$	
	$\begin{array}{l} t \rightarrow cZ \\ t \rightarrow c\gamma \\ t \rightarrow cg \end{array}$	$1 imes 10^{-14}$ $4.6 imes 10^{-14}$ $4.6 imes 10^{-12}$	
<	$\begin{array}{l} t \rightarrow cZ \\ t \rightarrow c\gamma \\ t \rightarrow cg \\ t \rightarrow cH \end{array}$	$1 imes 10^{-14}$ $4.6 imes 10^{-14}$ $4.6 imes 10^{-12}$ $3 imes 10^{-15}$	>

Aguilar-Saavedra, Acta Phys.Polon. B35:2695-2710 (2004)

$$\mathbf{vY}_{eff}^{ij} = \frac{c^{ij}}{\Lambda^2}$$

$$(vY^{ij} + v^3 \varepsilon^{ij}) \psi_L^{i} \psi_R^{j} + (Y^{ij} + 3v^2 \varepsilon^{ij}) \psi_L^{i} \psi_R^{j} h + \dots$$

$$h \text{ FCNC couplings if } Y^{ij} \neq c \varepsilon^{ij}$$

 $\mathbf{Y}^{ij} \boldsymbol{\psi}_{L}^{i} \boldsymbol{\psi}_{R}^{j} \boldsymbol{\phi} + \boldsymbol{\varepsilon}^{ij} \boldsymbol{\psi}_{L}^{i} \boldsymbol{\psi}_{R}^{j} \boldsymbol{\phi}^{3} + \dots$

G. Isidori, HL-LHC workshop

Signatures of FCNC

- Flavour-changing decays of top quarks
 - profit from large $\sigma(pp \rightarrow tt)$
 - experimentally challenging to separate t→Hc from t→Hu
 - turn BR limits into constraints on FCNC coupling:

$$\mathcal{B} = (\lambda_{tcH}^2 + \lambda_{tuH}^2)/(g^2 \cdot |V_{tb}|^2 \cdot \chi^2)$$

- Enhanced single-top plus Higgs production
 - Run I analysis mostly focusing on tHq

• CMS summary:

Tuesday, May 17, 16

Summary

- We have presented the Run I results on top+Higgs searches and measurements from ATLAS and CMS
 - ttH is the flagship to measure the Yukawa coupling
 - a firm evidence of this process is still missing, maybe possible already at the end of this year?
 - tH sensitivity in the ballpark for a flipped Yukawa coupling (*)
 - SM tH production remains beyond the scope of the LHC
 - searches for exotic ttH-like final states revealed no significant excess
 - measurement of the SM backgrounds to ttH final states remains an important task. Some measurements start to be systematically limited!
- New results at 13 TeV recently made public
 - ttH analyses close to Run I sensitivity already
 - no excess of SS events in ttH search
 - issues on tt+jets modeling should be settled as soon as possible

Grazie per l'attenzione!

Back up

ttH→bb: theory

ttH	NLO	PRL 87 (2001) 201805 NPB 653 (2003) PRD 68 (2003) 034022	
	Interference	arXiv:1412.5290	
	EWK corrections	arXiv:1504.03446	
tt+bb	tt+bb @NLO	PRL 103 (2009) 012002	
	tt+bb NLO+PS	PLB 734 (2014) 210 JHEP 07 (2014) 135 JHEP 1503 (2015) 083	
	tt+jj NLO	PRD 84 (2011) 114017	
	tt+jj NLO+PS	PLB 748 (2015) 74	

Principle

The top quark Yukawa

tt+V: signal extraction

Signal extraction from simultaneous fit to lepton categories

- improve sensitivity by dedicated ID discriminant
 - CMS uses of an event reconstruction algorithm to boost sensitivity

CMS, JHEP 01 (2016) 096

27

Η→γγ

- diphoton events with E_T^{miss}, leptons, jets
 - top reconstruction to suppress YY
 +jets continuum
- fit to m_{YY} spectrum:

ATLAS, JHEP 06 (2014) 008 CMS, PRD 90 112013 (2013) CMS, PAS-TOP-14-019

Resonant $H \rightarrow \gamma \gamma$ from MC

Non-resonant from fit

B (t→cH) 95% CL	Exp.	Obs.
ATLAS	0.51%	0.79%
CMS	0.71%	0.47%

H→bb

search region is 4j+3/4 tags (it overlaps with ttH/tHq)

tt+bb: theory

State-of-the-art tt+bb prediction: 4F NLO+PS (e.g. SherpaOL)

tt+bb: theory

ATLAS vs CMS: ttH→bb

	ATLAS	CMS	CMS Run2
Top p⊤ reweighing	- tt+LF - tt+cc	same for all tt+jets subprocesses	_
PS modeling	PYTHIA vs HERWIG (uncorrelated among tt+X)	-	PS scale variations (nominal, up, down)
tt+cc modeling	- μ _R /μ _F /μ _Q variations - c quark mass - MG5 vs POWHEG	µ _R ∕µ _F scale	μ _R /μ _F scale, PS scale
tt+bb modeling	μ _R /μ _F scale, PS, PDF	µ _R ∕µ _F scale	μ _R /μ _F scale, PS scale
Single-top modeling	μ _R /μ _F scale, PS, PDF	_	_
tt+V modeling	μ _R /μ _F scale, PS, PDF	_	μ _R /μ _F scale, PDF
ttH modeling	μ_R/μ_F scale, PS, PDF	_	μ_R/μ_F scale, PS scale, PDF