PP@LHC 2016, PISA - 16 MAY 2016

Andrea De Simone

MOSTLY BASED ON: DS, JACQUES - ARXIV:1603.08002 (REVIEW) BOVEIA ET AL. - ARXIV:1603.04156 (LHCDMWG)

OUTLINE

• a quick journey in theory space

• simplified models (s-channel, t-channel)

• some recommendations & future directions

TO WIMP OR NOT TO WIMP...

we are only sure that DM has gravitational interactions

THEORY SPACE

More complete/ more parameters

MSSM, Composite Higgs, Extra-Dim...

lots of parameters...

Complete

Models

THEORY SPACE

More complete/ more parameters

Complete

Models

Integrate out the UV physics connecting DM-SM and describe interactions with eff. ops.:

$$\frac{1}{\Lambda^2} (\bar{\chi} \Gamma^A \chi) (\bar{q} \Gamma_A q)$$

LHC can access regions beyond the validity of the eff. description

need to use EFT <u>carefully</u> and <u>consistently</u>

the momentum transfer in the relevant process must be $~Q_{
m tr} \lesssim M_{
m med}$

LHC VS DIRECT DETECTION

The "money plots"

L=20.3 fb⁻¹

EFT DISCOVERY POTENTIAL

"There's a way to do it better. **Find it**." T.A. Edison

EFT approach

- limited validity
- not entirely model-independent

How to go beyond that (but keeping generality), in view of LHC Run 2?

Simplified Models

SIMPLIFIED MODELS

SIMPLIFIED MODELS

... just means extending the SM with:

- 1 Dark Matter particle
- 1 Mediator particle connecting DM-SM

>> just another parametrization of unknown high energy physics <<

no worries about EFT, widths, etc.

from DM search to MEDIATOR search

still, a lot to do here...

[more in Valerio's talk...]

RECOMMENDATIONS

Simplified Models for Dark Matter and Missing Energy Searches at the LHC

Jalal Abdallah,¹ Adi Ashkenazi,² Antonio Boveia,³ Giorgio Busoni,⁴ Andrea De Simone,⁴ Caterina Doglioni,⁵ Aielet Efrati,⁶ Erez Etzion,² Johanna Gramling,⁵ Thomas Jacques,⁵ Tongyan Lin,⁷ Enrico Morgante,⁵ Michele Papucci,^{8,9} Bjoern Penning,^{3,10} Antonio Walter Riotto,⁵ Thomas Rizzo,¹¹ David Salek,¹² Steven Schramm,¹³ Oren Slone,² Yotam Soreq,⁶ Alessandro Vichi,^{8,9} Tomer Volansky,² Itay Yavin,^{14,15} Ning Zhou,¹⁶ and Kathryn Zurek^{8,9}

[1409.2893] ATLAS/CMS DM Forum

Interplay and Characterization of Dark Matter Searches at Colliders and in Direct Detection Experiments

Sarah A. Malik,^{*a*} Christopher McCabe,^{*b,c*} Henrique Araujo,^{*a*} Alexander Belyaev,^{*d,e*} Céline Bœhm,^{*b*} Jim Brooke,^{*f*} Oliver Buchmueller,^{*a*} Gavin Davies,^{*a*} Albert De Roeck,^{*g,h*} Kees de Vries,^{*a*} Matthew J. Dolan,^{*i*} John Ellis,^{*g,j*} Malcolm Fairbairn,^{*j*} Henning Flaecher,^{*f*} Loukas Gouskos,^{*k*} Valentin V. Khoze,^{*b*} Greg Landsberg,^{*l*} Dave Newbold,^{*f*} Michele Papucci,^{*m*} Timothy Sumner,^{*a*} Marc Thomas^{*d,e*} and Steven Worm^{*e*}

[1409.4075]

Recommendations on presenting LHC searches for missing transverse energy signals using simplified <u>s-channel</u> models

of dark matter

Antonio Boveia,^{1,*} Oliver Buchmueller,^{2,*} Giorgio Busoni,³ Francesco D'Eramo,⁴ Albert De Roeck,^{1,5} Andrea De Simone,⁶ Caterina Doglioni,^{7,*} Matthew J. Dolan,³ Marie-Helene Genest,⁸ Kristian Hahn,^{9,*} Ulrich Haisch,^{10,11,*} Philip C. Harris,¹ Jan Heisig,¹² Valerio Ippolito,¹³ Felix Kahlhoefer,^{14,*} Valentin V. Khoze,¹⁵ Suchita Kulkarni,¹⁶ Greg Landsberg,¹⁷ Steven Lowette,¹⁸ Sarah Malik,² Michelangelo Mangano,^{11,*} Christopher McCabe,^{19,*} Stephen Mrenna,²⁰ Priscilla Pani,²¹ Tristan du Pree,¹ Antonio Riotto,¹¹ David Salek,^{19,22} Kai Schmidt-Hoberg,¹⁴ William Shepherd,²³ Tim M.P. Tait,^{24,*} Lian-Tao Wang,²⁵ Steven Worm²⁶ and Kathryn Zurek²⁷

LHC DM WG

A. De Simone

[1603.04156]

SIMPLIFIED MODELS OVERVIEW

Mediator spin	Channel	DM spin	Model Name
0	S	0	0.80
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$
0	t	0	0t0
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$
1	S	0	1 <i>s</i> 0
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$

SIMPLIFIED MODELS OVERVIEW

Mediator spin	Channel	DM spin	Model Name	q DM
0	S	0		
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$	Q DM
0	t	0	0t0	q DM
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$	generic
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$	S-Channel models
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$	
1	S	0		
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$	
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$	

S-CHANNEL MODELS

DM is a Dirac Fermion

Scalar and Pseudo-Scalar Models:

$$\mathcal{L}_{\text{scalar}} = -g_{\text{DM}}\phi\bar{\chi}\chi - g_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q}q, \quad (0_{\text{S}}\text{S1/2})$$
$$\mathcal{L}_{\text{pseudo-scalar}} = -ig_{\text{DM}}\phi\bar{\chi}\gamma_5\chi - ig_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q}\gamma_5q, \quad (0_{\text{P}}\text{S1/2})$$

Vector and Axial-Vector Models:

$$\mathcal{L}_{\text{vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q , \qquad (1_{\text{VS1/2}})$$
$$\mathcal{L}_{\text{axial-vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma_5 \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} \gamma_5 q . \qquad (1_{\text{AS1/2}})$$

 $\mathbf{ }$

4-dimensional parameter space: $\{m_{\mathrm{DM}}, M_{\mathrm{med}}, g_{\mathrm{DM}}, g_q\}$

THE MASS-MASS PLANE

[1604.04156]

Recommended choices	Vector mediator: $g_{\text{DM}} = 1$ and $g_q = 0.25$.		
of couplings:	Axial-vector mediator: $g_{\text{DM}} = 1$ and $g_q = 0.25$.	ensure	$\Gamma_{\rm med}/M_{\rm med} \lesssim 10\%$
(universal a)	Scalar mediator: $g_q = 1$ and $g_{DM} = 1$.	avoid c	urrent limits
(universal <i>g</i> _q)	Pseudo-scalar mediator: $g_q = 1$ and $g_{DM} = 1$.		

ONTO THE DIRECT DETECTION PLANE

$$\sigma_{\rm SI,SD} \propto \frac{(g_q g_{\rm DM})^2}{M_{\rm med}^4}$$

then plug in M_{med} from the mass-mass plane

recommend to plot 90% CL (instead of 95% CL) to comply with DD standards

SIMPLIFIED MODELS OVERVIEW

Mediator spin	Channel	DM spin	Model Name	q \ H.S DM	
0	S	0	0.80		Higgs mediator
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$		calar-Higgs Portal
0	t	0	0 <i>t</i> 0	₫ DM	
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$	<i>s</i> -channe	I models
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$	(special	cases)
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$	q 🔪 🗾 Z 🕞 DM	
1	S	0	1s0		
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$		Z mediator
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$	q DM	

1s1/2 Model (Z Mediator)

Mediator spin	Channel	DM spin	Model Name	
0	S	0	0.80	model parameters: $\{m_{\mathrm{DM}},g\}$
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$	relevant constraints:
0	t	0	0t0	- Direct detection ($m_{ m DM}>m_Z/2$)
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$	- Z invisible width ($m_{\rm DM} < m_Z/2$ and SD scattering)
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$	mono-jet searches not competitive
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$	
1	S	0	1 <i>s</i> 0	
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$	
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$	
				DS, Giudice, Strumia - 1402.6287]

OS1/2 MODEL (HIGGS MEDIATOR)

Mediator spin	Channel	DM spin	Model Name	q H DM
0	S	0	0.80	
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$	
0	t	0	0t0	q y DM
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$	
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$	Model parameters: $\{m_{\mathrm{DM}}, y\}$
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$	relevant constraints: - Direct detection ($m_{ m DM} > m_h/2$)
1	S	0	1 <i>s</i> 0	
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$	- Higgs invisible width ($m_{ m DM} < m_h/2$)
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$	mono-jet searches not competitive
				[DS, Giudice, Strumia - 1402.6287]

[DS, Giudice, Strumia - 1402.6287]

Near resonance m_{DM}~M_{Z,h}/2, relic density fixed by the width

Curves for correct DM relic abundance:

OS1/2 MODEL (SCALAR-HIGGS PORTAL)

Mediator spin	Channel	DM spin	Model Name	q 🔪 S/H 🧹 DM
0	S	0	0.50	S "talks" to SM only via H
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$	mixing of real scalar mediator S and Higgs
0	t	0	0t0	looks like a 2HDM, with <s>=0</s>
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$	$\mathscr{L} \supset \frac{1}{2} (\partial_{\mu} S)^2 - \frac{1}{2} m_S^2 S^2 + \bar{\chi} (i \partial - m_{\chi}) \chi - \frac{h}{\sqrt{2}} \sum_f y_f \bar{f} f$
		1		$-y_{\chi}S\bar{\chi}\chi-\mu_{S}S H ^{2}-\lambda_{S}S^{2} H ^{2}.$
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$	Model parameters: $\{m_{\chi}, m_{S}, \lambda_{S}, \mu_{S}\}$
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$	$ \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h \\ S \end{pmatrix} \longrightarrow \begin{pmatrix} m_{h_1} \simeq m_h \\ m_{h_2} \simeq \sqrt{m_S^2 + \lambda_S^2 v^2} $
1	S	0	1 <i>s</i> 0	$\tan(2\theta) = 2\nu\mu_S/(m_S^2 - m_h^2 + \lambda_S v^2)$
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$	In the mass-eigenstate basis:
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$	$\mathscr{L} \supset -(h_1 \cos \theta - h_2 \sin \theta) \sum_f \frac{y_f}{\sqrt{2}} \bar{f} f - (h_1 \sin \theta + h_2 \cos \theta) y_{\chi} \bar{\chi} \chi$ Higgs Yukawas reduced by $\cos \theta$

OS1/2 MODEL (SCALAR-HIGGS PORTAL) W^{\pm}/Z DM spin Model Name Mediator spin Channel χ **LHC** signals $1/h_2$ 0 0 0*s*0 S mono-jet + $\frac{1}{2}$ 0 $0s\frac{1}{2}$ S $\bar{\chi}$ W^{\pm}/Z $q_{V^{\pm}/Z}$ W^{\pm}/Z $\nabla W^{\pm}/Z$ mono-W χ 0 0 0*t*0 h_1/h_2 h_1/h_2 t $\bar{\chi}$ $\frac{1}{2}$ $0t\frac{lg}{2}$ 0 mono-Higgs t $\bar{\chi}$ Lee 1 t $\frac{1}{2}$ $\frac{1}{2}t0$ 0 g $uuuu_{\uparrow}$ $\bar{\chi}$ h_1 t \boldsymbol{q} Lee $t_t h_1/h_2$ t χ *leee*e h_2 h_1/h_2 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}t\frac{1}{2}$ t القحقو tg \mathfrak{s} g uuuu $h_{1\,t}$ χ h h_2 g 999 g uuuu 0 1 1*s*0 S h_1 >> combine with inv. width, VBF... $\frac{1}{2}$ $1s\frac{1}{2}$ 1 S A playground for testing $\frac{1}{2}$ $1t\frac{1}{2}$ 1 t complementarity techniques

SIMPLIFIED MODELS OVERVIEW

Mediator spin	Channel	DM spin	Model Name	t-chan	nel models
0	S	0	0.50		
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$	no tree-level	<i>Leitmotiv:</i> mediator carries non-trivial quantum numbers
0	t	0	0t0		q DM
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$		
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$		
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$		g DM – DM
1	S	0	1 <i>s</i> 0	<u> </u>	, q ~ 0t1/2
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$	q DM	g cxcept for ID/DD g dim-5 dipole
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$	q M	~0t1/2

OT1/2 MODEL

Mediator spin	Channel	DM spin	Model Name	
0	S	0	0.00	
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$	η carries color, EW, flavor η (if DM total singlet)
0	t	0	0t0	q Image: The squark-like mediator
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$	possible to couple η to: u_R , d_R , Q_L
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$	choose u _R :
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$	$\mathscr{L}_{0t\frac{1}{2}} \supset \sum_{i=1,2,3} \left[\frac{1}{2} (\partial_{\mu} \eta_{i})^{2} - \frac{1}{2} M_{i}^{2} \eta_{i}^{2} + (g_{i} \eta_{i}^{*} \bar{\chi} u_{i} + \text{h.c.}) \right]$ $M_{1} = M_{2} = M_{2}$
1	s	0	1 <i>s</i> 0	MFV: $MFV: a_1 = a_2 = a_3 \equiv a$
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$	Model parameters: $\{m_\chi, M, g\}$
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$	g is a free parameter (<u>unlike SUSY</u>)

- In s-channel models: play with Scalar-Higgs Portal model
- In t-channel models: the mediator typically carries charges (QCD, EW produciton possible) Next-in-line to be explored

Fully exploit complementarity <<</p>

then what? simplified models v. 2.0?

- guided by new hints/excesses/discoveries in future data
- new collider signatures, different from mono-X ?
- more degrees of freedom/more parameters? loop mediation?
 …?

BACK UP

1s1/2 Model (Z Mediator)

OS1/2 MODEL (HIGGS MEDIATOR)

1/2TO MODEL

in Model Name	Channel D	q , DM	
0.50	S	mediator ψ is a vector-like ferm	nion
$0s\frac{1}{2}$	S	ψ carrying color , EW and flavor (if DM total singlet)	•
0t0	t		
1		possible to couple to: q_R , Q_L	
$0t\frac{1}{2}$	t	choose q _R :	
		$\mathscr{L}_{1,\alpha} \supset \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m_{\phi} \phi^2 + \overline{\psi} (i D - M_{\mu}) \psi + (\nu \phi \overline{\psi} a_B + 1)$	h.c.)
$\frac{1}{2}t0$	t	$\frac{1}{2}t_0 = 2^{(0\mu\gamma)} + 2^{$	
$\frac{1}{2}t\frac{1}{2}$	t	pretty much the same story as 0t1/2 (for LHC)	
1 <i>s</i> 0	S		
$1s\frac{1}{2}$	S	different results for (in)direct detection e.g. $\langle \sigma v \rangle$ is d-wave suppressed (v ⁴)	N
$1t\frac{1}{2}$	t t		

Xenon-1T will probe TeV region of DM mass

1/2T1/2 MODEL

Mediator spin	Channel	DM spin	Model Name	g , DM
0	S	0	0.50	ψ fermion color-octet (aluino-like)
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$	ψ in SUSY: gluon-gluino-bino
0	t	0	0t0	9
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$	$\mathscr{L}_{\frac{1}{2}t\frac{1}{2}} \supset \bar{\psi}^a(i\not{D} - M)\psi^a + \frac{1}{\Lambda}G^a_{\mu\nu}(\bar{\psi}^a\sigma^{\mu\nu}\chi + \text{h.c.})$ dimension-5 dipole operator
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$	
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$	weak signals for LHC, maybe future colliders
1	S	0	1 <i>s</i> 0	[details not worked out]
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$	
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$	

1T1/2 MODEL

Mediator spin	Channel	DM spin	Model Name
0	S	0	0.80
0	S	$\frac{1}{2}$	$0s\frac{1}{2}$
0	t	0	0t0
0	t	$\frac{1}{2}$	$0t\frac{1}{2}$
$\frac{1}{2}$	t	0	$\frac{1}{2}t0$
$\frac{1}{2}$	t	$\frac{1}{2}$	$\frac{1}{2}t\frac{1}{2}$
1	S	0	1 <i>s</i> 0
1	S	$\frac{1}{2}$	$1s\frac{1}{2}$
1	t	$\frac{1}{2}$	$1t\frac{1}{2}$

q q DM

vector mediator carries color, EW and flavor

similar story as 0t1/2 (squark-like mediator)

[details not worked out]

LOOP MEDIATION

Beyond tree-level mediation?

a model for scalar DM interacting with gluons

[Godbole, Mendiratta, Tait - 1506.01408]

 $\chi\,$: DM, complex scalar, gauge singlet

 ϕ_i : scalar mediator, color-triplet, EM charged, flavour triplet

[other color reps. (e.g. octet) not explored]

$$\mathcal{L} \supset \partial_{\mu} \chi^* \partial^{\mu} \chi - m_{\chi}^2 |\chi|^2 + (D_{\mu} \phi)^{\dagger} D^{\mu} \phi - m_{\phi}^2 |\phi|^2$$
[neglected mixing with H]
$$+ \lambda_d |\chi|^2 |\phi|^2 + \text{ inter. with quarks}$$

$$\epsilon_{ijk}\phi_i u_j u_k$$
 \searrow $y_1 \ (\phi_1 c_R - \phi_2 u_R) t_R + y_2 \ \phi_3 u_R c_R$ (flavour singlet, MFV)

LOOP MEDIATION

[Godbole, Mendiratta, Tait - 1506.01408]

LOOP MEDIATION

dark penguins

[Weiner, Yavin - 1209.1093] [Primulando, Salvioni, Tsai - 1503.04204]

color-octet scalar mediator (0t1/2)

 $\eta~$ interaction with DM is not renormalizable

 $\eta~$ interaction with gluons: only in pairs $\sim \eta\eta G, \eta\eta GG$

 η interaction with quarks: suppressed by m_q

[not worked out]