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Disclaimer

The Higgs was the last guided discovery
Right now, we are not sure of what we should search for
Experimental research now is exploration, not validation

We do have theoretical questions to be asked to data, e.qg.
B Naturalness: a proper microscopic origin of EW scale?
B Dark Matter: must be there. Can be a WIMP?

However, searching for specific signals dictated by those
questions should be accompanied by theory-independent
exploration effort. [This holds now and, if nothing is seen at future coll.]



Higgs Couplings in CH

Model-independent prediction, from symmetries
Direct connection w2ith tuning:
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for fermion couplings:

. MCHM
CAVEATS: 1) Easy to encounter k; # k

t H 2) Easy to find extra Goldstone
scalars that contribute by mixing

_ o 3) New couplings are also there
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(see e.g. arXiv:1205.5444)


http://arxiv.org/abs/arXiv:1205.5444

Higgs Couplings in CH

Current bound (from ATLAS) IS 5 < 0.12,
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Expected LHC-300 reach (with SM central value): ¢ < 0.1.
No much space for improvement at run-2



Higgs Couplings in the MSSM

Higgs coupling modifications expected (a priori) from

second doublet mixing:
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Direct H,A searches
[from Barbieri et. al, 2013]
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Higgs Couplings in the MSSM

Higgs coupling modifications expected (a priori) from
second doublet mixing:
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Higgs Couplings in the MSSM

Higgs coupling modifications expected (a priori) from
second doublet mixing:

However ....
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Higgs Couplings in the MSSM

Natural MSSM is fine with couplings, but killed by mass

2 2 S Exponentially — Exponentially
My > My heavy stops large tuning

Higgs Mass vs. Fine Tuning
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Less Minimal SUSY (A-SUSY)

[Barbieri et al. 2006, Hall et al. 2012, Barbieri et al. 2013]

Adding extra singlet is sufficient to avoid heavy stops
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The framework requires large A and moderate tan 3

No decoupling limit. Tuning set by scalar masses, e.g.
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Direct Tuning/Scalar sector connection in A-SUSY.




Less Minimal SUSY (A-SUSY)

[Barbieri et al. 2006, Hall et al. 2012, Barbieri et al. 2013]

Higgs coupling bounds (singlet decoupled): current
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Less Minimal SUSY (A-SUSY)

[Barbieri et al. 2006, Hall et al. 2012, Barbieri et al. 2013]

Higgs coupling bounds (singlet decoupled): LHC-300

(improved HTT)
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Beyond Higgs Couplings

Physics modifying couplings also affects other EW obs.
In EFT description: (appropriate if BSM is heavy)

EFT Higgs coupling modifications
e L:d:6  dominated by systematics
9 * no much benefit from larger run-2 rate

High energy EW processes
e larger effects at high energy: AOO~ E9/A?
e possible improvement at run-2




Beyond Higgs Couplings

Physics modifying couplings also affects other EW obs.
In EFT description: (appropriate if BSM is heavy)

EFT Higgs coupling modifications
e L:d:6  dominated by systematics
9 * no much benefit from larger run-2 rate

High energy EW processes
e larger effects at high energy: AOO~ E9/A?
e possible improvement at run-2

I
el > 1TV | LHG better than LEP on some EWPT par.?

few 7 LHC Plus of course measuring operators not
19%0| LEP constrained by LEP




Resonances

Plenty of opportunities at run-2

run-1 limits on Composite HVT
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Resonances

Plenty of opportunities at run-2

run-1 limits on Composite HVT run-2 sensitivity
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Resonances

Plenty of opportunities at run-2

from Higgs coup., qualitative
run-1 limits on Composite HVT run-2 sensitivity
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Direct + indirect limit ~ 3 TeV @LHC, > 4 TeV @QHL-LHC




CR

Plenty of opportunities at run-2
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CR

Resonances

Plenty of opportunities at run-2

run-1 limits on Top Partners
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Resonances

Plenty of opportunities at run-2

run-1 limits on Top Partners
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Wb

Resonances

Plenty of opportunities at run-2

run-1 limits on Top Partners

run-2 sensitivity
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Resonances

Plenty of opportunities at run-2

Top Partner searches on a table:

Production

Decay
W +1 W +0b Z/h+t
Pair Production | X5/3,B T Xo/3, 1, T
Single + top Xs5/3, B Xo/3, 1
Single + bottom T T




Resonances

Plenty of opportunities at run-2
Top Partners mass robustly connected with tuning

(same as SUSY stops)
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Resonances

Plenty of opportunities at run-2

Top Partners mass robustly connected with tuning
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Dark Matter

DM could be anything. Mod.-indep. is mandatory



Dark Matter

DM could be anything. Mod.-indep. is mandatory

IF DM/SM coupling from high scale: Myiea => mpwm
Model-independent description, by EFT:

Ling = ]\2? Z c; O;

The EFT has three parameters (little paradigm shift)
1) Dark Matter mass mpwu

2) Effective coupling strength M.,
3) EFT cutoff M..: (indep. of M,)

Huge variety of models encapsulated in these parameters




Dark Matter

[De Simone et al., 2014 ; AW et al., 2015]

Debated problem: LHC can carry us above the cutoff.
A/ B

EFT

Mcut Ecm

Solution: (obvious if M., is par.) restricting signal to the
predictable region sets lower bound on the “true” signal

S

S
OpFT

S O-true < Uexc

Ecm < Mcut

compared with exclusion upper bound, we get a mod.
indep. limit that holds for any mediator model



Dark Matter

[De Simone et al., 2014 ; AW et al., 2015]

Debated problem: LHC can carry us above the cutoff.
A/ B

EFT

Mcut Ecm

Solution: (obvious if M., is par.) restricting signal to the
predictable region sets lower bound on the “true” signal

Alternative solution: (obvious if not understanding EFT’s)
give UP (trend of recent analyses, exception is ATLAS mono-photon)



M. |GeV|

Dark Matter

[De Simone et al., 2014 ; AW et al., 2015]

Presenting limit in 3-d parameter space:
ATLAS mono-j recast
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Plot outlines the need of a better exploration of soft region



Dark Matter

[De Simone et al., 2014 ; AW et al., 2015]

A smarter plot: g« = Myt /M., mediator sector coupling
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Dark Matter

[De Simone et al., 2014 ; AW et al., 2015]

A smarter plot: g« = Mcu /M., mediator sector coupling

L=100fb"", Vs =13TeV
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Only a bit better at run-2. Unavoidable because o o 1/M?



Dark Matter

EFT limits get weak (not inconsistent!) at low M+
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EFT limits get weak (not inconsistent!) at low M+

But M.+ ~ Mmeq: produce on-shell mediators at low M.

>

DM search turns into mediator search in this regime




Dark Matter

EFT limits get weak (not inconsistent!) at low M+

But M.+ ~ Mmeq: produce on-shell mediators at low M.

>

DM search turns into mediator search in this regime
More difficult to maintain sufficient degree of mod.-indep.




Dark Matter

Mediator searches, how not to proceed: by benchmarks

Theorist L Experimentalist

Too specific, often conventional
benchmark models produce:

e extremely partial exploration of
the theoretical possibilities

e exclusions which are impossible
to reuse in any other model

* no result in case of discovery.
» Since the benchmark has no
S S l chance to be true

“t’s the Ldeal benchmark ...”




Dark Matter

Mediator searches, how not to proceed: by benchmarks

|
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Theorist

Experimentalist

|

“t’s the Ldeal bemchmark ...”
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s really this plot ...
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... the best one to report
limits on a Z’>invisible??



Diphoton

Can be real:

ATLAS/CMS@run-2/1 compatible if gg or bb production [Gof>10%]

Not in tension with other channels if weakly coupled to leptons
RS graviton is (almost) the only excluded case ...
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Diphoton

Can be real:

ATLAS/CMS@run-2/1 compatible if gg or bb production [Gof>10%]

Not in tension with other channels if weakly coupled to leptons
RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List

1) characterise its properties: (have a look at arXiv:1603.04248)
B Spin from cos 6. ., distribution
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Spin 0 = flat

Spin 2 from gg = linear combination
. of 3 distributions.
Spin 2 from gg = linear combination

of 4 distributions.

RS graviton = 1 particular case




Diphoton

Can be real:

ATLAS/CMS@run-2/1 compatible if gg or bb production [Gof>10%]

Not in tension with other channels if weakly coupled to leptons
RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List

1) characterise its properties: (have a look at arXiv:1603.04248)

B Spin from cos 6. ., distribution

B Production mode from y..m. distribution (+ searching for soft b’s)
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Can be real:

Diphoton

ATLAS/CMS@run-2/1 compatible if gg or bb production [Gof>10%]
Not in tension with other channels if weakly coupled to leptons

RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List
1) characterise its properties: (have a look at arXiv:1603.04248)

B Spin from cos 6. ., distribution

B Production mode from y..m. distribution (+ searching for soft b’s)
B Conclusive result on CP from QCD collinear radiation

pp > Rjj

J=0, CP=+

Ag(j])

J=0, CP=-

Ag(j])




Diphoton

Can be real:

ATLAS/CMS@run-2/1 compatible if gg or bb production [Gof>10%]

Not in tension with other channels if weakly coupled to leptons
RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List

1) characterise its properties: (have a look at arXiv:1603.04248)

B Spin from cos 6. ., distribution
B Production mode from y..m. distribution (+ searching for soft b’s)
B Conclusive result on CP from QCD collinear radiation

2) see it in other channels [ 7+ seems good candidate]

~

Only one channel among
WW, ZZ, Z~

can be suppressed

CwRWW -+ CBRBB




Diphoton

Can be real:

ATLAS/CMS@run-2/1 compatible if gg or bb production [Gof>10%]

Not in tension with other channels if weakly coupled to leptons
RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List

1) characterise its properties: (have a look at arXiv:1603.04248)

B Spin from cos 6. ., distribution
B Production mode from y..m. distribution (+ searching for soft b’s)
B Conclusive result on CP from QCD collinear radiation

2) see it in other channels [ 7+ seems good candidate]
3) Find all the rest: cannot be alone!



Diphoton

If only SM particles in the loop, we would have
1 seen it in other channels.

A new sector of BSM particles is responsible for
its decay!

3) Find all the rest: cannot be alone!



Diphoton

Can be real:

ATLAS/CMS@run-2/1 compatible if gg or bb production [Gof>10%]

Not in tension with other channels if weakly coupled to leptons
RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List

1) characterise its properties: (have a look at arXiv:1603.04248)

B Spin from cos 6. ., distribution
B Production mode from y..m. distribution (+ searching for soft b’s)
B Conclusive result on CP from QCD collinear radiation

2) see it in other channels [ 7+ seems good candidate]
3) Find all the rest: cannot be alone!

If real, diphoton = revolution in particle physics!



Conclusions

1) Moderate progress on Higgs couplings. Better if enlarging the scope to
high-energy EW processes? [in any case, not for early run-2]

2) Fast progresses on resonance searches.

3) Dark Matter: figure of merit (i.e., interpretation plane) not clear enough to
assess run-2 progresses.

4) Diphoton:
The mere fact that it can be true illustrates how little we know about

the TeV scale.
Its potentially revolutionary nature shows capital run-2 importance



events

10*
10°
102

10

Muon collider

Good for direct exploration?

—
-

IITT]IIYTTTITIYT]T ]1]11[11[][1]’1]
i coll, {$ = 9 TeV, 1y x L=10™

—

LHC, ($=13 TeV, 1y x L=10™

. i coll, (S = 6 TeV, 1y » L=10™
LMC, (5=30 TeV, 1y x Lu10

u coll, {s = 3 TeV, 1y x L=10™

s FCC-hh, {S=100 TeV, 1y » Lw10® — 11 COII, Vs= 1.2'M,, 1y » L=10*

LUBRERLL BREEI ER R R B R
bl ool vevnd vl o vl 3 o

/’—'
-
-
-
-
-
-
-
-
-
-
-
-
—
-
—
—

-t —
N
W
NaN
(&)
(o))
~
Z®r
> L
=t
Dol
<
e

Good for indirect exploration?

few %
1 O700

100GeV > 1TeV

LHC

LEP

mu?



