Learning from run-2

Andrea Wulzer

Università degli Studi di Padova

Disclaimer

The **Higgs** was the **last guided discovery** Right now, we are not sure of what we should search for

Experimental research now is **exploration**, not **validation**

Disclaimer

The Higgs was the last guided discovery

Right now, we are not sure of what we should search for Experimental research now is **exploration**, not **validation**

We do have theoretical questions to be asked to data, e.g.
Naturalness: a proper microscopic origin of EW scale?
Dark Matter: must be there. Can be a WIMP?

Disclaimer

The Higgs was the last guided discovery

Right now, we are not sure of what we should search for Experimental research now is **exploration**, not **validation**

We do have theoretical questions to be asked to data, e.g.
Naturalness: a proper microscopic origin of EW scale?
Dark Matter: must be there. Can be a WIMP?

However, searching for specific signals dictated by those questions should be accompanied by theory-independent exploration effort. [This holds now and, if nothing is seen at future coll.]

Higgs Couplings in CH

Model-independent prediction, from symmetries Direct connection with tuning:

 $\xi = \frac{v^2}{f^2} \qquad \Delta \ge \frac{1}{\xi}$ Higgs-Vectors coupling modification: $k_V = \sqrt{1-\xi}$ Few discrete possibilities $\begin{cases} MCHM_5 & k_F = \frac{1-2\xi}{\sqrt{1-\xi}} \\ MCHM_4 & k_F = \sqrt{1-\xi} \\ MCHM_{10} & \cdots \end{cases}$ CAVEATS: 1) Easy to encounter $k_t \neq k_b$ (1) Easy to find extra Goldstone

 Easy to find extra Goldstone scalars that contribute by mixing
 New couplings are also there

(see e.g. arXiv:1205.5444)

Higgs Couplings in CH

Expected LHC-300 reach (with SM central value): $\xi < 0.1$. **No** much space for **improvement** at **run-2**

Higgs coupling modifications expected (a priori) from second doublet mixing:

Higgs coupling modifications expected (a priori) from second doublet mixing:

Higgs coupling modifications expected (a priori) from second doublet mixing:

Natural MSSM is fine with couplings, but killed by mass

Less Minimal SUSY (λ -SUSY)

[Barbieri et al. 2006, Hall et al. 2012, Barbieri et al. 2013]

Adding extra singlet is sufficient to avoid heavy stops

$$W_{\lambda} = \lambda S H_u H_d \qquad \longrightarrow \qquad m_h^2 \sim m_Z^2 \left(\frac{1-t^2}{1+t^2}\right)^2 + 4\lambda^2 v^2 \frac{t^2}{(1+t^2)^2}$$

The framework requires large λ and moderate aneta

No decoupling limit. Tuning set by scalar masses, e.g.

$$\Delta \ge \frac{1}{\lambda^2} \left(\frac{m_{H^{\pm}}}{170 \,\text{GeV}} \right)^2$$

Direct Tuning/Scalar sector connection in λ -SUSY.

Less Minimal SUSY (λ -SUSY)

[Barbieri et al. 2006, Hall et al. 2012, Barbieri et al. 2013]

Higgs coupling bounds (singlet decoupled): current

Less Minimal SUSY (λ -SUSY)

[Barbieri et al. 2006, Hall et al. 2012, Barbieri et al. 2013]

Higgs coupling bounds (singlet decoupled): LHC-300

(improved $H\tau\tau$)

Beyond Higgs Couplings

Physics modifying couplings also affects other EW obs. In EFT description: (appropriate if BSM is heavy)

Beyond Higgs Couplings

Physics modifying couplings also affects other EW obs. In EFT description: (appropriate if BSM is heavy)

LHC better than LEP on some EWPT par.? Plus of course measuring operators not constrained by LEP

Plenty of opportunities at run-2

run-1 limits on Composite HVT

Plenty of opportunities at run-2

Direct + indirect limit ~ 3 TeV @LHC, > 4 TeV @HL-LHC

Plenty of opportunities at run-2

Top Partner searches on a table:

Decay				
		W+t	W + b	Z/h+t
Production	Pair Production	$X_{5/3}, B$	\widetilde{T}	$X_{2/3}, T, \widetilde{T}$
	Single + top	$X_{5/3}, B$		$X_{2/3}, T$
	Single + bottom		\widetilde{T}	\widetilde{T}

Plenty of opportunities at run-2

Top Partners mass robustly connected with tuning

Plenty of opportunities at run-2

Top Partners mass robustly connected with tuning

DM could be anything. Mod.-indep. is mandatory

DM could be anything. Mod.-indep. is mandatory

IF DM/SM coupling from high scale: $M_{\rm Med} \gg m_{\rm DM}$ Model-independent description, by EFT:

$$\mathcal{L}_{\text{int}} = \frac{1}{M_*^2} \sum_i c_i O_i$$

The EFT has three parameters (little paradigm shift)

1) Dark Matter mass $m_{\rm DM}$

2) Effective coupling strength M_*

3) EFT cutoff $M_{\rm cut}$ (indep. of M_*)

Huge variety of models encapsulated in these parameters

Debated problem: LHC can carry us above the cutoff.

Solution: (obvious if $M_{\rm cut}$ is par.) restricting signal to the predictable region sets lower bound on the "true" signal

$$\sigma_{EFT}^{S}\Big|_{E_{\rm cm} < M_{\rm cut}} \le \sigma_{\rm true}^{S} < \sigma_{\rm exc}$$

compared with exclusion upper bound, we get a mod. indep. limit that holds for any mediator model

Debated problem: LHC can carry us above the cutoff.

Solution: (obvious if $M_{\rm cut}$ is par.) restricting signal to the predictable region sets lower bound on the "true" signal

Alternative solution: (obvious if not understanding EFT's) **give up** (trend of recent analyses, exception is ATLAS mono-photon)

Presenting limit in 3-d parameter space: ATLAS mono-j recast

Plot outlines the need of a better exploration of soft region

A smarter plot: $g_* \equiv M_{\rm cut}/M_*$, mediator sector coupling

"WI"MP hypothesis far from fully tested

A smarter plot: $g_* \equiv M_{\rm cut}/M_*$, mediator sector coupling

Only a bit better at run-2. Unavoidable because $\sigma \propto 1/M_*^4$

EFT limits get weak (not inconsistent!) at low $M_{\rm cut}$

EFT limits get weak (not inconsistent!) at low $M_{\rm cut}$

But $M_{\rm cut} \simeq M_{\rm med}$: produce on-shell mediators at low $M_{\rm cut}$

DM search turns into mediator search in this regime

EFT limits get weak (not inconsistent!) at low $M_{\rm cut}$

But $M_{\rm cut} \simeq M_{\rm med}$: produce on-shell mediators at low $M_{\rm cut}$

DM search turns into mediator search in this regime More difficult to maintain sufficient degree of mod.-indep.

Mediator searches, how not to proceed: by benchmarks

"it's the ideal benchmark ..."

Too specific, often **conventional benchmark models** produce:

- extremely partial exploration of the theoretical possibilities
- exclusions which are impossible to reuse in any other model
- no result in case of discovery. Since the benchmark has no chance to be true

Mediator searches, how not to proceed: by benchmarks

Can be real:

ATLAS/CMS@run-2/1 compatible **if gg or bb production** [Gof>10%] Not in tension with other channels **if weakly coupled to leptons** RS graviton is (almost) the only excluded case ...

Can be real:

ATLAS/CMS@run-2/1 compatible **if gg or bb production** [Gof>10%] Not in tension with other channels **if weakly coupled to leptons** RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List

1) characterise its **properties**: (have a look at arXiv:1603.04248)

Can be real:

ATLAS/CMS@run-2/1 compatible **if gg or bb production** [Gof>10%] Not in tension with other channels **if weakly coupled to leptons** RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List

1) characterise its **properties**: (have a look at arXiv:1603.04248)

Spin from $\cos \theta_{c.m.}$ distribution

Spin 0 =flat

Spin 2 from gg = linear combination of 3 distributions.

Spin 2 from qq = linear combination of 4 distributions.

RS graviton = 1 particular case

Can be real:

ATLAS/CMS@run-2/1 compatible **if gg or bb production** [Gof>10%] Not in tension with other channels **if weakly coupled to leptons** RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List

1) characterise its properties: (have a look at arXiv:1603.04248)

Spin from $\cos \theta_{c.m.}$ distribution

Production mode from $y_{c.m.}$ distribution (+ searching for soft b's)

Can be real:

ATLAS/CMS@run-2/1 compatible **if gg or bb production** [Gof>10%] Not in tension with other channels **if weakly coupled to leptons** RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List

1) characterise its **properties**: (have a look at arXiv:1603.04248)

- Spin from $\cos \theta_{c.m.}$ distribution
- Production mode from $y_{c.m.}$ distribution (+ searching for soft b's)
- Conclusive result on CP from QCD collinear radiation

Can be real:

ATLAS/CMS@run-2/1 compatible **if gg or bb production** [Gof>10%] Not in tension with other channels **if weakly coupled to leptons** RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List

1) characterise its **properties**: (have a look at arXiv:1603.04248)

- Spin from $\cos \theta_{c.m.}$ distribution
- Production mode from $y_{c.m.}$ distribution (+ searching for soft b's)
- Conclusive result on CP from QCD collinear radiation

2) see it in other channels [$Z\gamma$ seems good candidate]

Only one channel among $WW, ZZ, Z\gamma$

can be suppressed

Can be real:

ATLAS/CMS@run-2/1 compatible **if gg or bb production** [Gof>10%] Not in tension with other channels **if weakly coupled to leptons** RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List

1) characterise its **properties**: (have a look at arXiv:1603.04248)

- Spin from $\cos \theta_{c.m.}$ distribution
- Production mode from $y_{c.m.}$ distribution (+ searching for soft b's)
- Conclusive result on CP from QCD collinear radiation
- 2) see it in **other channels** [$Z\gamma$ seems good candidate]
- 3) Find all the rest: cannot be alone!

3) Find all the rest: cannot be alone!

Can be real:

ATLAS/CMS@run-2/1 compatible **if gg or bb production** [Gof>10%] Not in tension with other channels **if weakly coupled to leptons** RS graviton is (almost) the only excluded case ...

IF it is real: ToDo List

1) characterise its **properties**: (have a look at arXiv:1603.04248)

- Spin from $\cos \theta_{c.m.}$ distribution
- Production mode from $y_{c.m.}$ distribution (+ searching for soft b's)
- Conclusive result on CP from QCD collinear radiation
- 2) see it in **other channels** [$Z\gamma$ seems good candidate]
- 3) Find all the rest: cannot be alone!

If real, **diphoton = revolution** in particle physics!

Conclusions

- 1) Moderate progress on Higgs couplings. Better if enlarging the scope to high-energy EW processes? [in any case, not for early run-2]
- 2) Fast progresses on resonance searches.
- 3) Dark Matter: figure of merit (i.e., interpretation plane) not clear enough to assess run-2 progresses.
- 4) Diphoton:

The mere fact that it **can be true** illustrates **how little we know** about the TeV scale.

Its potentially revolutionary nature shows capital run-2 importance

Muon collider

