pp@LHC 16-18 May 2016

Francesco Dettori (CERN) Umberto De Sanctis (University of Sussex) Sara Fiorendi (Università degli Studi di Milano - Bicocca)

> on behalf of ATLAS CMS and LHCb Collaborations

#### Rare beauty and charm decays



## Why rare decays



- Information about physics beyond the SM can be found studying rare decays properties:
  - the branching ratios of  $B_{s,d} \rightarrow \mu \mu$
  - selected observables in B  $\rightarrow$  K(\*)µµ
  - the rate of decays such as  $B \rightarrow MI^+I^-$  with different leptons in the final state
  - · LFV and very rare decays
  - photon polarization and radiative B decays

### Rare decays analyses in Runl

- · Benchmark channels explored/being explored by the three experiments
- Physics of rare-decays is obviously LHCb bread&butter
  - · particle ID detectors
  - access to low p<sub>T</sub> objects
  - · low pileup environment
  - CMS and ATLAS:

•

- mainly limited to multi-muon triggers with few GeV thresholds
- · complement |η| region covered by LHCb (not so important for rare decays)
- · 20 fb<sup>-1</sup> data collected, while LHCb has 3fb<sup>-1</sup>

|                         | ATLAS        | CMS          | LHCb                     |
|-------------------------|--------------|--------------|--------------------------|
| B <sup>0</sup> (s) → µµ | $\checkmark$ | $\checkmark$ | $\checkmark$             |
| B⁰ → K*µµ               |              | ▲ ✓          | $\checkmark$             |
| Lepton Univ.            | _            | -            | $\checkmark$             |
| LFV                     | $\checkmark$ | _            | <i>√√√√√</i>             |
| rare radiative decays   | _            | _            | $\sqrt{\sqrt{\sqrt{2}}}$ |

LHCb Average Pileup at 4 TeV in 2012







## What do we expect from RunII

- Cross section for B-physics processes is almost doubled wrt Runl
  - factor 2 in the collected statistics
- LHC expected to deliver ~100 fb<sup>-1</sup> in RunII
  - · LHCb lumi-leveling → collect about 5 fb<sup>-1</sup>
  - ATLAS and CMS can fully exploit the luminosity delivered by LHC
    - however, this implies higher event rate
      - main limitation will be the trigger step
      - higher PU → more combinatorial/backgrounds
  - Higher statistics than in Runl will allow to

- improve statistical uncertainty on already pursued measurements
- access to new decay modes (very rare decays)
- RunII will significantly improve reach of new physics searches
- · results will probably come out not before the end of this year



## **Detector improvements - ATLAS**

#### Insertable **B-Layer**

- new 4th layer for Pixel detector close to beam pipe (33.25 mm radius)
- up to a factor of 2 improvement in impact parameter resolution for low p<sub>T</sub> tracks
  - · improvement in lifetime precision
- significant improvement in b-tagging efficiency for jets and move to offline-style tagging algorithms

#### Muon system updates

- installation of new chambers
- improvements and overhaul of readout electronics
- new Thin Gap Chamber (TGC) coincidence layer added to minimize fakes at high pseudorapidity
- extra coincidence with sections of tile calorimeter (2016)



#### **Detector improvements - CMS**

New pixel detector to be installed during extended year-end technical stop 2016/2017

- additional 4th barrel layer and 3rd disk → 4 hit coverage will provide more robust tracking
- smaller radius of inner layer → better vertex resolution and b-tagging efficiency
- · lower material budget → lower multiple scattering
- new improved readout chip → recover hit inefficiency





# Trigger in RunII- ATLAS

- Dedicated B-physics triggers delivering good yields
  - in 2015, managed to keep Mu4Mu6 unprescaled for the entire run
  - in 2016 additional requirements are applied to keep low thresholds
- In 2016, inclusion of L1 topological trigger
  - new inputs to L1 trigger system providing information on event topology Level-1 rate [Hz]
  - expect significant improvements for B-physics performance
    - helping maintaining low thresholds
    - commissioning ongoing through early 2016
- Fast TracK trigger
  - tracking reconstruction between L1 and HLT
  - track quality similar to offline reconstruction with significantly reduced processing time



#### Trigger results ATLAS

## Trigger in RunII - CMS

Completely renewed hardware trigger (L1) from 2016

- possibility to introduce more complex topological requirements ( $\Delta R$ )
- will allow to apply invariant mass selections already at this step
- · could be beneficial to reduce rate of low p<sub>T</sub> dimuon seeds
- HLT selections based on multi-muons paths

- work ongoing to further improve tuning of the online selections (adding further requirements)
- · in 2015, lowest  $p_T$  unprescaled dimuon paths had two muons with  $p_T > 4$  GeV each



# Trigger in Runll - LHCb

- Same hardware trigger (L0)not thresholds
- Completely revised HLT
  - improved trigger farm able to write to storage 12.5 kHz instead of 5 kHz
  - same reconstruction online as offline
  - need "online" calibrations and alignments
    - split in HLT1 and HLT2
    - events buffered after HLT1
    - alignment and calibration run on dedicated HLT1 samples
    - HLT2 performs full event reconstruction



# $B^{0}(s) \rightarrow \mu^{+}\mu^{-}$ decays

FCNC in the SM, helicity and CKM suppressed

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)_{SM} = (3.66 \pm 0.23) \times 10^{-9}$  $\mathcal{B}(B^0 \to \mu^+ \mu^-)_{SM} = (1.06 \pm 0.09) \times 10^{-10}$ 

PRL 112 (2014) 101801

Theoretically very clean process (virtually no long-distance contributions)

- Particularly sensitive to FCNC scalar currents and Z penguins
- Experimental signature also very clean
  - · 2 muons in the final state

- suitable also for CMS and ATLAS
- One of the most promising channels to reveal new physics contributions

|                        | <b>ATLAS</b><br>arXiv:1604.04263 | <b>CMS</b><br>PRL 111 (2013) 101804 | <b>LHCb</b><br>PRL 111 (2013) 101805 |
|------------------------|----------------------------------|-------------------------------------|--------------------------------------|
| muon p⊤                | 4 - 6 GeV                        | 4 GeV (2011)<br>3 GeV (2012)        | 0.25 GeV                             |
| dimuon mass resolution | 60 to 120 MeV<br>(η dependent)   | from 32 to 75 MeV<br>(η dependent)  | ~ 23 MeV                             |
| sensitivity            | 3.1σ                             | 4.8σ                                | 5.0σ                                 |

## CMS + LHCb combined analysis

Nature 522, 68, 2015

- Simultaneous fit to invariant masses distributions
  - nuisance parameters shared between CMS and LHCb
  - ·  $B^+ \rightarrow J/\psi K^+$  decay used as reference channel
  - Branching fraction results

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$  $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$ 

compatibile with the SM at 1.2 $\sigma$  for B<sup>0</sup><sub>s</sub> and 2.2 for B<sup>0</sup>

Results for the ratio of branching fractions

$$\mathcal{R} = \frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)} = 0.14^{+0.06}_{-0.08}$$

within 2.3 $\sigma$  of SM prediction





## $B^{0}(s) \rightarrow \mu^{+}\mu^{-}$ from ATLAS

#### arXiv:1604.04263

- · Recent results from ATLAS on full Run1 statistics
  - similar analysis strategy as CMS and LHCb
  - precision comparable to individual CMS and LHCb measurements

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= (0.9^{+1.1}_{-0.8}) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-10} \ @95\% \ CL \end{split}$$





# $B^{0}(s) \rightarrow \mu^{+}\mu^{-}$ in RunII

- Absence of large enhancements over SM BR does not mean these rare modes are becoming less interesting
  - we simply excluded scenarios with large scalar FCNC's and entered into a regime where different type of amplitudes (Z-penguins, Z', ...) can affect these decays
    - there is still large room for NP!
- Measurement of the branching fractions
  - production cross-section approximately doubled
  - present theoretical uncertainty ~ 6% likely will decrease to 2-3% in the next few years
  - improve measured precision as theoretical precision increases
  - trigger thresholds will be the main limitation for ATLAS and CMS
- $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$  effective lifetime

- · sensitive to the asymmetry parameter
- independent probe of new physics
- f<sub>s</sub>/f<sub>d</sub> measured by ATLAS and LHCb so far, measurement from CMS would be interesting



# $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay

Decay mode that gives access to large number of observables: branching fractions. CP asymmetries and angular observable

• branching fraction ~  $4.5 \cdot 10^{-7}$ 

- · sensitive to new vector or axial-vector currents and virtual photon polarization
- the decay is fully described by three angles ( $\theta_I$ ,  $\theta_K$ ,  $\phi$ ) and the dimuon invariant mass squared (q<sup>2</sup>)
- the observables depend on form-factors for the  $B \rightarrow K^*$  transition plus the underlying short distance physics (Wilson coefficients)

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\bar{\Omega}}\Big|_{\mathrm{P}} = \frac{9}{32\pi} \Big[ \frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \cos^2 \theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \sin^2 \theta_l \sin^2 \theta_l \sin^2 \theta_k \sin^2 \theta_l \sin$$



# $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ analysis

**LHCb** has performed the full angular analysis of the decay with the full Runl statistics

٠

•

- full set of CP-averaged angular terms and their correlations is extracted
- - lower event yields due to higher p<sub>T</sub> thresholds and combinatorial background
  - does not measure the full set of observables
  - full angular analysis on Runl data ongoing



JHEP 02 (2016) 104

ATLAS analysis on full Run1 data ongoing

#### $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ results

- Results for A<sub>FB</sub> and F<sub>L</sub> available from LHCb, CMS, Babar, CDF and Belle
- Results from full angular analysis only available from LHCb and a recent measurement from Belle
  - present data show some "tension" with SM predictions especially in the P<sub>5</sub>' parameter
  - P<sub>5</sub>' is one of the form-factor free observables  $P'_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}}$ 
    - deviation from SM prediction at level of 2.8 and 3.0 standard deviations in the q<sup>2</sup> bins (4-6)(6-8) GeV/c<sup>2</sup>



#### Other branching fraction measurements

Anomalies present also in other  $b \rightarrow s\mu\mu$  channels



#### Wilson coefficient fits

- · Some deviations are observed in different exclusive modes and different type of observables (angular and BR)
- · Reduced tension in all the observables with a unique fit of non-standard short-distance Wilson coefficients

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{tq}^* \sum_i (\mathcal{C}_i \mathcal{O}_i + \mathcal{C}'_i \mathcal{O}'_i)$$





#### Lepton Universality

• In the SM, ratios 
$$R_K = \frac{\int d\Gamma[B^+ \to K^+ \mu^+ \mu^-]/\mathrm{d}q^2 \cdot \mathrm{d}q^2}{\int d\Gamma[B^+ \to K^+ e^+ e^-]/\mathrm{d}q^2 \cdot \mathrm{d}q^2}$$

expected to be 1 in SM with uncertainty O(10<sup>-3</sup>) JHEP 12 (2007) 040 PRL 112 (2014) 149902

- precise theory prediction due to cancellation of hadronic uncertainties
- experimentally more challenging due to differences in electron/muon reconstruction (larger Bremsstrahlung of electrons)
- In Runl, LHCb measured  $\,R_{
  m K} = 0.745 \, {}^{+0.090}_{-0.074} \, {}^{+0.036}_{-0.036}$

in the range  $1 < q^2 < 6 \text{ GeV}^{2}$ , consistent with the SM at 2.6 $\sigma$ 

· Tension also seen in the measurement of

•

$$R(X) = \frac{\Gamma(B \to X\tau\bar{\nu})}{\Gamma(B \to X\ell\bar{\nu})} \xrightarrow{*}_{\Gamma} 0.5 \xrightarrow{\text{BaBar}}_{\text{Belle}} \Delta\chi^2 = 1.0$$



## b → sll decays in Runll

- RunII data will improve statistical precision of the current experimental measurements
  - LHCb will repeat full angular analyses and BR measurements at 13 TeV
  - ATLAS and CMS:

٠

- sensitivity reach difficult to predict since full angular analyses on RunI data are still ongoing
- significant effort ongoing to maintain low trigger thresholds
- · eventually, higher statistics could give access to complementary decay channels
  - $\cdot \Lambda_b \rightarrow \Lambda \mu^+ \mu^-$
  - $\cdot B_s \rightarrow \varphi \mu^+ \mu^-$

Decays with electrons in the final states reasonably investigated only by LHCb

### Lepton Flavor Violating decays

- · LFV allowed in the SM in the context of massive neutrinos (BR ~10<sup>-40</sup> or less, beyond experimental sensitivity)
- · Beyond the SM theories can significantly enhance LFV decay branching fractions
- · Measurements mostly published by LHCb

| BR                                             | LHCb                                     | data sample                | ATLAS                                                   |
|------------------------------------------------|------------------------------------------|----------------------------|---------------------------------------------------------|
| B <sup>0</sup> s→e⁺µ⁻                          | < 1.4 x 10 <sup>-8</sup> @95% CL         | 1.0 fb <sup>-1</sup> 7 TeV | -                                                       |
| B⁰→e⁺µ⁻                                        | < 3.7 x 10 <sup>-9</sup> @95% CL         | 1.0 fb <sup>-1</sup> 7 TeV | -                                                       |
| D <sup>0</sup> → e <sup>+</sup> µ <sup>-</sup> | <1.3 x10 <sup>-8</sup> @90% CL           | 3.0 fb⁻¹                   | -                                                       |
| τ⁻→ μ⁻μ⁺μ⁻                                     | < (4.1 - 6.8) x 10 <sup>-8</sup> @90% CL | 3.0 fb⁻¹                   | < 3.76 x 10 <sup>-7</sup> @90% CL (20fb <sup>-1</sup> ) |



Results from LHC experiments would be competitive if ready by the end of RunII (before Belle2 results)

## Radiative B decays

- Loop-driven B decays are very sensitive to the presence of new physics BSM
  - the SM photon in b  $\rightarrow$  sy is predominantly left-handed whilst the right-handed contribution can be significantly enlarged due to new physics
- Reconstruction of low p<sub>T</sub> photons is experimentally challenging:
  - LHCb: energy determined from the total cluster energy in the calorimeter - photon reconstruction dominates mass resolution
  - CMS and ATLAS: conversion to  $e^+e^-$  pairs, very low efficiency
- Publications from LHCb only
  - observation of photon polarization through the decay  $B^{\pm} \rightarrow K^{\pm}\pi^{\mp}\pi^{\pm}\gamma$
  - measurement of the ratio of BF  $B(B^0 \rightarrow K^{*0}\gamma)/B(B_s \rightarrow \varphi\gamma) = 1.23 \pm 0.06(stat) \pm 0.04(syst) \pm 0.10(f_s/f_d)$ in agreement with theoretical expectations Nucl. Phys. B867 (2013) 1



25 WeV contraction of the contra

Candidates / 200 200 200

400

resolution

90 MeV/



Data Full fit

### Rare charm decays

Rare charm decays proceed via highly suppressed  $c \rightarrow u\mu^+\mu^-$  FCNC process

- · in the SM short distance contributions O(10<sup>-9</sup>) but long-distance (tree diagrams involving resonances such as D → XV (→  $\mu^+\mu^-$ ), where V is a  $\phi$ ,  $\rho^0$  or  $\omega$  vector meson) increase branching fraction to O(10<sup>-6</sup>)
- sensitivity to NP therefore is greatest in regions of the dimuon mass spectrum away from resonances
- however angular asymmetries sensitive to NP both in the vicinity and away from resonances
  - · could be as large as O(1%)

. . .

Measurements from LHCb only for different decay channels, no significant deviations from SM

| • | first measurement of BF of $D^0 \rightarrow K^-\pi^+\mu^+\mu^-$ in the $\rho/\omega$ region | arXiv:1510.08367  |
|---|---------------------------------------------------------------------------------------------|-------------------|
| • | $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$                                                      | PLB728 (2014) 234 |
| • | $D^+s \rightarrow \pi^+\mu^+\mu^-$                                                          | PLB724 (2013) 203 |
| • | $D^0 \rightarrow \mu\mu$                                                                    | PLB725 (2013) 16  |

## Conclusions

- Rare decays are a fundamental portal to access new physics effects
- · The RunI of the LHC is showing some tension with SM predictions in the flavor sector
- Precise measurements in RunII are fundamental to prove these deviations and help building a comprehensive picture
  - · ATLAS and CMS will play an important role alongside LHCb
  - coordination between the three experiments would be beneficial to cover the interesting topics and in view of possible combinations of the results

## backup

### P<sub>5</sub>' predictions



### $B^{0}(s) \rightarrow \mu^{+}\mu^{-}$ from the individual experiments

#### ATLAS

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= (0.9^{+1.1}_{-0.8}) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-10} @95\% CL \end{split}$$

#### CMS

 $\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= (3.0^{+1.0}_{-0.9}) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) < 1.1 \times 10^{-9} @95\% CL \end{aligned}$ 

#### LHCb

 $\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= (2.9^{+1.1}_{-1.0}) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 7.4 \times 10^{-10} @95\% CL \end{aligned}$