Prospettive per la fisica del Flavour per il Run 2 di LHC

Luca Silvestrini

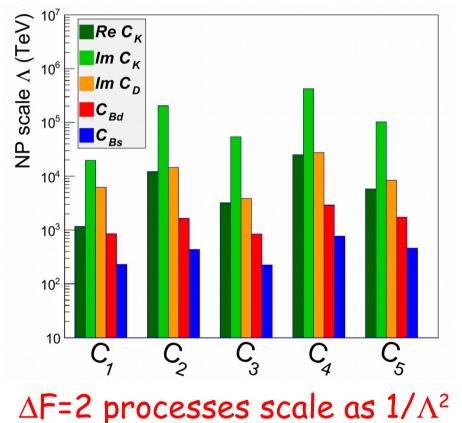
INFN, Rome

- Introduction
- SM UTA and NP in $\Delta F\text{=}2$
- Rare decays and LUV
- Conclusions

WHY FLAVOUR?

- Because we don't understand the origin of the peculiar SM flavour structure (q vs l)
- Because flavour is the most powerful probe of physics beyond the SM
- Because flavour strongly constrains any NP within the LHC reach

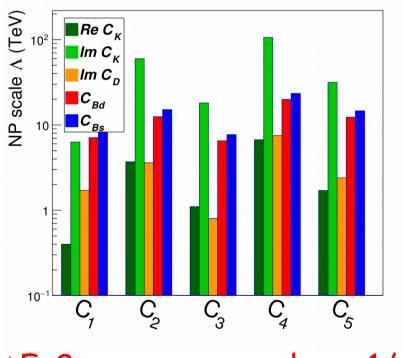
INDIRECT SEARCHES FOR NP


- Search for virtual contributions of new particles: sensitive to g_{NP}^{2}/Λ^{2}
- Use observables where SM contributions are either absent (BNV, LNV, LFV) or loopsuppressed (EWPO, FCNC).
- Advantage of flavour over EWPO: hierarchical structure of CKM provides very strong suppression of FCNC & CPV

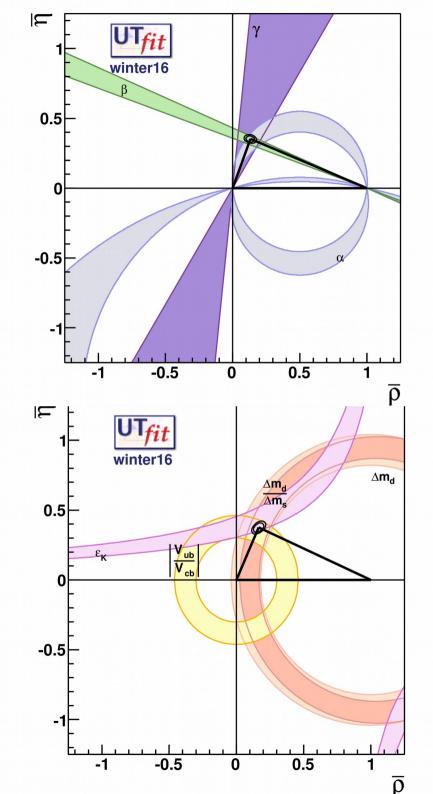
INDIRECT SEARCHES FOR NP II

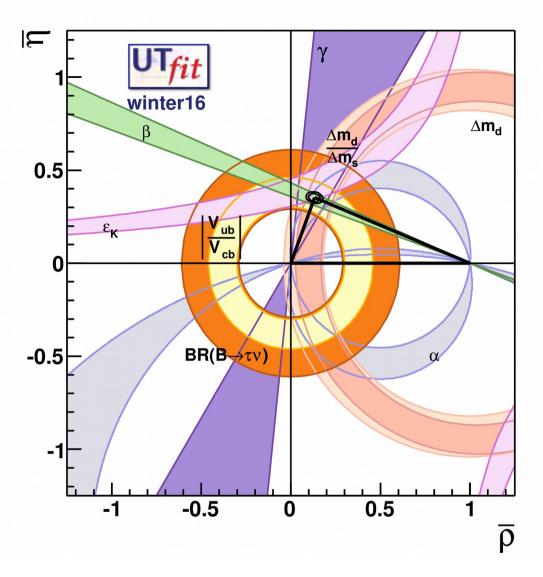
- For models with new sources of flavour and CP violation, flavour sensitivity orders of magnitude larger than EWPO
- For models with Minimal Flavour and CP Violation, flavour sensitivity comparable to EWPO
- Flavour physics plays a key role in indirect searches for NP

BOUNDS ON NP: GENERIC


Bounds from $\Delta F=2$ processes, generic flavour structure

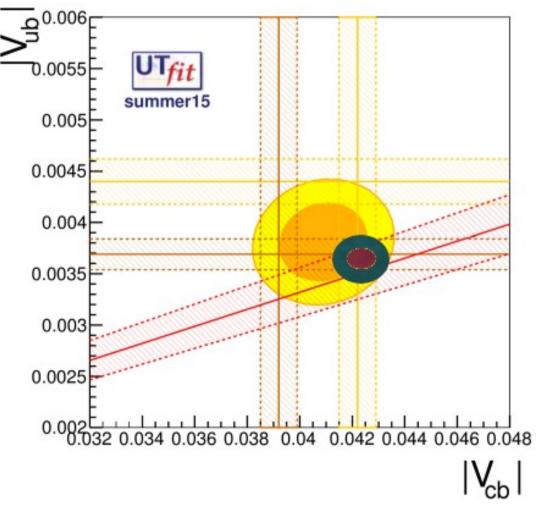
- Best bound from $\boldsymbol{\epsilon}_{\mathrm{K}},$ dominated by CKM error
- CPV in charm mixing follows, exp error dominant
- Best CP conserving from $\Delta m_{\rm K}$, dominated by long distance
- B_d and B_s behind, error from both CKM and Bparams


BOUNDS ON NP: CKM-LIKE


Bounds from $\Delta F=2$ processes, CKM-like flavour structure

 $\Delta F\text{=}2$ processes scale as $1/\Lambda^2$

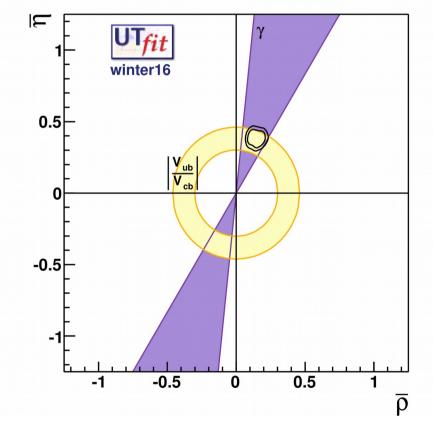
- If new chiral structures present, $\varepsilon_{\rm K}$ still leading
- B_(s) mixing provides very stringent constraints, specially if no new chiral structures are present
- Constraining power of the various sectors depends on unknown NP flavour structure: must improve all sectors!



 $\rho = 0.142 \pm 0.018$ $\eta = 0.348 \pm 0.012$

Parameter	Input value	Full fit	SM Prediction	Pul
$\bar{ ho}$	_	_	0.142 ± 0.018	_
$\bar{\eta}$	_	-	0.348 ± 0.012	
A	_	_	0.829 ± 0.012	—
λ	0.22518 ± 0.00087	-	0.22504 ± 0.00064	-0.
$ V_{ub} $	0.00380 ± 0.00040	0.00365 ± 0.00011	0.00364 ± 0.00012	-0
$ V_{ub} _{(\text{excl.})}$	0.00369 ± 0.00014	_	_	-0
$ V_{ub} _{(incl.)}$	0.00440 ± 0.00022	_	_	-3
$ V_{cb} $	0.0408 ± 0.0011	0.04205 ± 0.00053	0.04237 ± 0.00062	$^{+1}$
$ V_{cb} _{(excl.)}$	0.03919 ± 0.00070			+3
$\left V_{cb} ight $ (incl.)	0.04220 ± 0.00070			+0
$\alpha[^{\circ}]$	92.5 ± 5.5 and 166.1 ± 0.6	90.0 ± 2.7	88.1 ± 3.4	-0
$\beta[^{\circ}]$	—	22.04 ± 0.85	24.2 ± 1.6	_
$\gamma[^\circ]$	-108.5 ± 6.5 and 71.4 ± 6.5	67.7 ± 2.8	66.9 ± 3.0	-0
$\sin(2\beta)$	0.679 ± 0.023	0.695 ± 0.021	0.746 ± 0.039	+1
$\beta_s[^\circ]$	0.97 ± 0.94	-	1.057 ± 0.038	0.0
$ \epsilon_k \cdot 10^3$	2.228 ± 0.011	2.227 ± 0.010	2.03 ± 0.18	-1
$\Delta m_s [\mathrm{ps}^{-1}]$	17.761 ± 0.022	17.760 ± 0.022	17.3 ± 1.0	-(

INCLUSIVE VS EXCLUSIVE

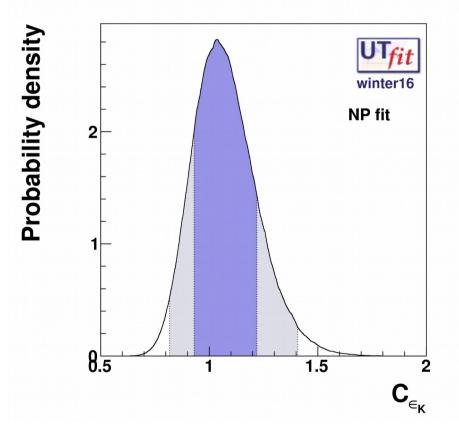


Disagreement between inclusive and exclusive Use inflated error à la PDG Indirect determination in agreement with excl.

V_{ub} and incl. V_{cb}

PP @ LHC, Pisa, 17/5/2016

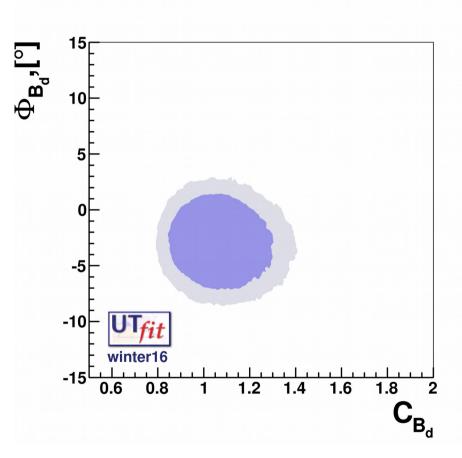
NP-INDEPENDENT CKM



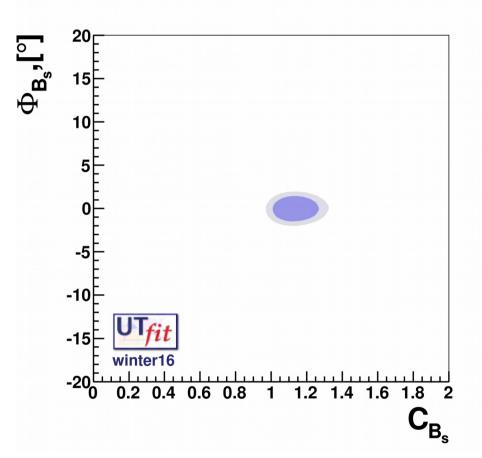
SM fit: $\rho = 0.142 \pm 0.018$ $\eta = 0.348 \pm 0.012$ PP @ LHC, Pisa, 17/5/2016

NP fit: $\rho = 0.146 \pm 0.043$ $\eta = 0.384 \pm 0.043$

- $|V_{ub}|$ and $|V_{cb}|$ from semileptonic B dec.
- γ from tree-level decays
- A_{sl}^d to exclude 2nd
 solution model independently


NP FIT RESULTS

- C_{εK} = ε_K/ε_KSM = 1.07 ± 0.14
 ([0.80,1.38] @ 95% probability)
- Main source of error: CKM, then B_K (1.3%), LD (~%)


NP IN B_d MIXING

- C_{Bd} = 1.08 ± 0.15
 ([0.79,1.40] @ 95%)
- φ_{Bd} = (-2.8 ± 2.8)°
 ([-8.5,2.7]° @ 95%)
- Sources of error: CKM ~ M.E. ~ 10%

Preliminary!

NP IN B_s MIXING

- C_{Bs} = 1.141 ± 0.087
 ([0.97,1.32] @ 95%)
- φ_{Bs} = (0 ± 1)°
 ([-2,2]° @ 95%)
- sources of error: CKM ~ M.E. ~ 5%

NP contributions at the level of 30-40% of the SM still allowed in all sectors! PP @ LHC, Pisa, 17/5/2016 L. Silvestrini 13

D MIXING

• D mixing is described by:

- Dispersive $D \rightarrow \overline{D}$ amplitude M_{12}

- SM: long-distance dominated, not calculable
- NP: short distance, calculable w. lattice

- Absorptive D \rightarrow D amplitude Γ_{12}

- SM: long-distance, not calculable
- NP: negligible

- Observables: $|M_{12}|$, $|\Gamma_{12}|$, Φ_{12} =arg(Γ_{12}/M_{12})

"REAL SM" APPROXIMATION

- Given present experimental errors, it is perfectly adequate to assume that SM contributions to both M_{12} and Γ_{12} are real
- all decay amplitudes relevant for the mixing analysis can also be taken real
- NP could generate a nonvanishing phase for M_{12}

"REAL SM" APPROXIMATION II

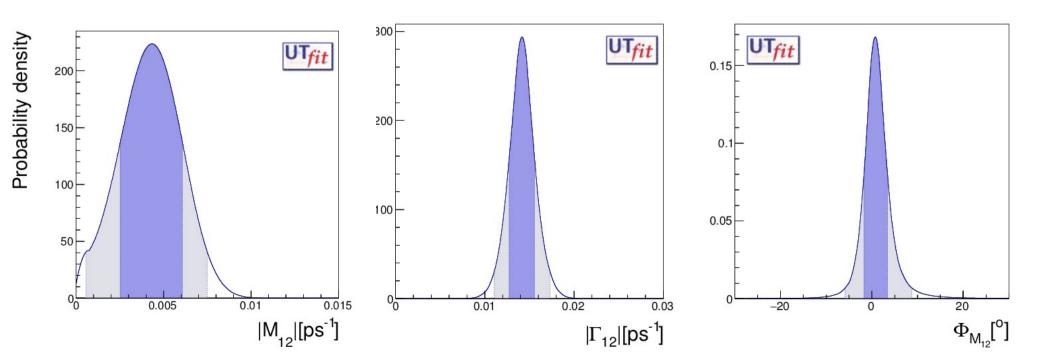
• Define $|D_{SL}|=p|D^0|\pm q|D^0|$ and $\delta=(1-|q/p|^2)/$ $(1+|q/p|^2)$. All observables can be written in terms of x= $\Delta m/\Gamma$, y= $\Delta \Gamma/2\Gamma$ and δ , with

$$\sqrt{2}\,\Delta m = \operatorname{sign}(\cos\Phi_{12})\sqrt{4|M_{12}|^2 - |\Gamma_{12}|^2 + \sqrt{(4|M_{12}|^2 + |\Gamma_{12}|^2)^2 - 16|M_{12}|^2|\Gamma_{12}|^2\sin^2\Phi_{12}}},$$

$$\begin{split} \sqrt{2}\,\Delta\Gamma &= 2\sqrt{|\Gamma_{12}|^2 - 4|M_{12}|^2} + \sqrt{(4|M_{12}|^2 + |\Gamma_{12}|^2)^2 - 16|M_{12}|^2|\Gamma_{12}|^2\sin^2\Phi_{12}} \,, \\ \delta &= \frac{2|M_{12}||\Gamma_{12}|\sin\Phi_{12}}{(\Delta m)^2 + |\Gamma_{12}|^2} \,, \end{split}$$

- Notice that $\phi = \arg(q/p) = \arg(y + i\delta x) \arg(y + i\delta x)$
- $|q/p| \neq 1 \Leftrightarrow \phi \neq 0$ clear signals of NP Ciuchini et al; Kagan & Sokoloff

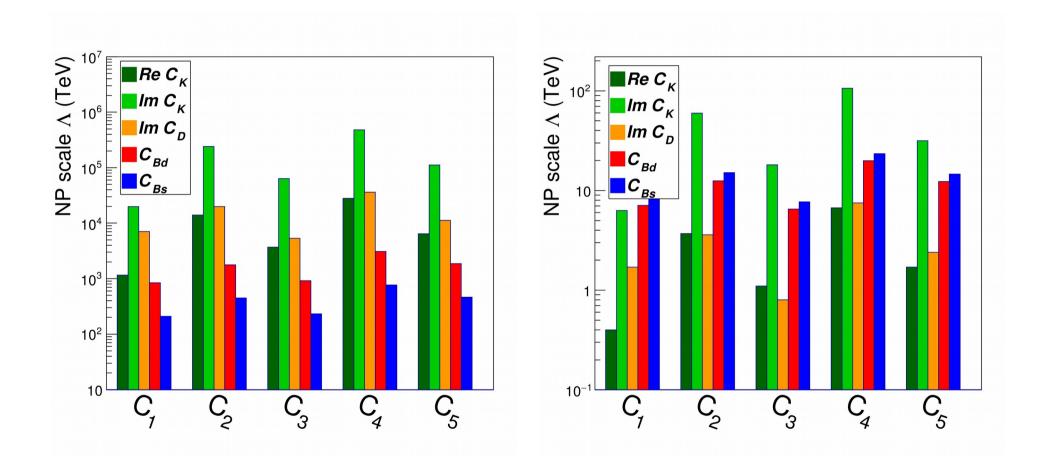
PP @ LHC, Pisa, 17/5/2016


L. Silvestrini

(7)

16

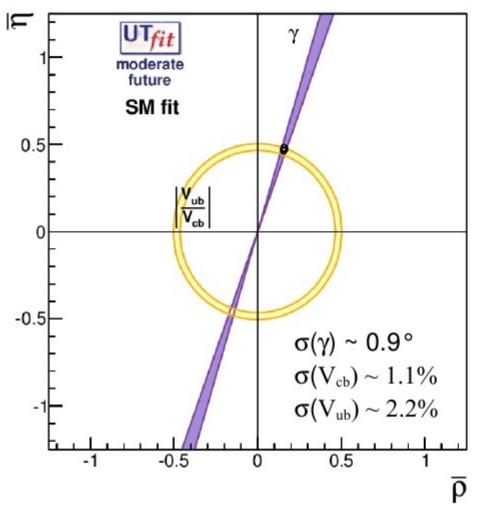
CPV IN CHARM MIXING


• Latest UTfit average (HFAG very similar): $x = (3.5 \pm 1.5) 10^{-3}, y = (5.8 \pm 0.6) 10^{-3},$ $|q/p|-1 = (0.7 \pm 1.8) 10^{-2}, \phi = \arg(q/p) = (0.20 \pm 0.56)^{\circ}$ $|M_{12}| = (4 \pm 2)/fs, |\Gamma_{12}| = (14 \pm 1)/fs, \Phi_{12} = (0 \pm 3)^{\circ}$

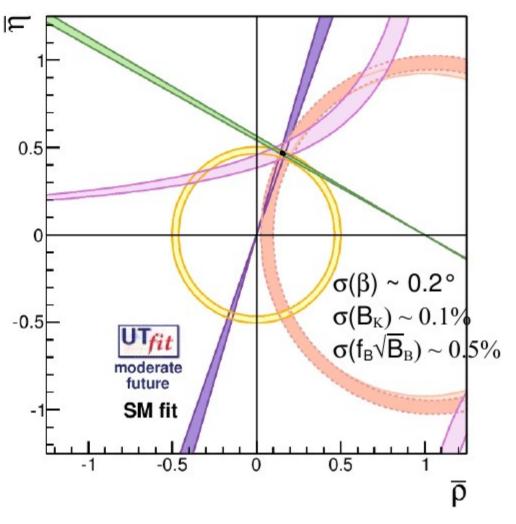
FROM $A_{\rm NP}$ TO Λ

- Having derived the NP amplitudes from the fit, the extraction of the NP scale Λ requires:
 - computing the hadronic matrix elements of NP-induced operators: currently all M.E.
 computed on the lattice, not a limitation
 - choosing a NP coupling and flavour structure

THE Λ PLOTS AGAIN

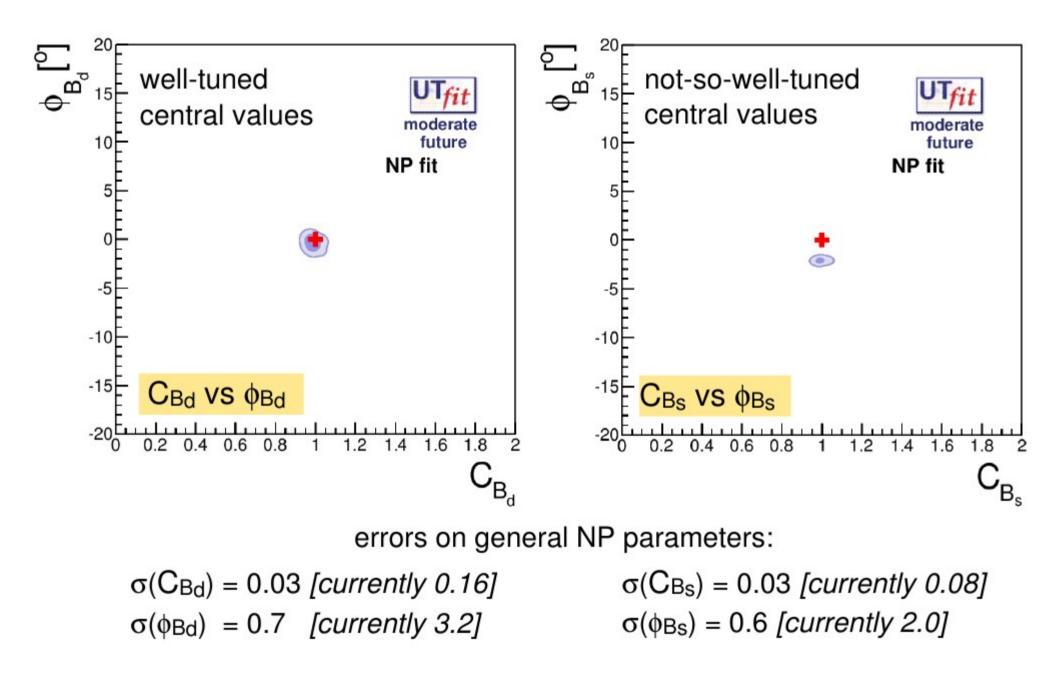

INTERPRETING THE BOUNDS

- generic case (no loop, no flavour suppression, all chiral structures): $\Lambda > 4.2 \ 10^5 \ TeV$
- Extra-Dim case (no loop suppression, CKM suppression, all chiral structures): Λ >96 TeV
- MFV case (no loop suppression, CKM suppression, only left-handed): $\Lambda > 9 \text{ TeV}$
- weakly-interacting MFV case (EW loop & CKM suppression, left-handed): $\Lambda > 300 \text{ GeV}$


FUTURE OF $\Delta F=2$

- In the next decade, Belle-II and LHCb upgrade will push down the exp. error on sin $2\beta_{(s)}$ to less than 0.01
- Th. error can be kept below 0.01 using control channels as $S(B \rightarrow J/\psi\pi)$
- B-parameters will go below the % level, new ideas to attack long-distance in K and D
- Improving γ , α , $|V_{cb}| \& |V_{ub}|$ crucial!

PP @ LHC, Pisa, 17/5/2016

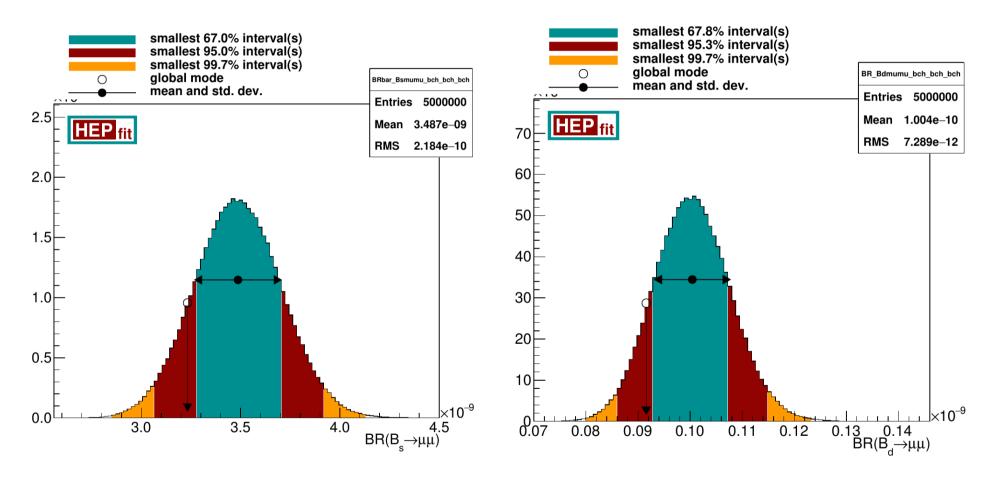


errors from tree-only fit on ρ and η : $\sigma(\rho) = 0.008 [currently 0.051]$ $\sigma(\eta) = 0.010 [currently 0.050]$

errors from 5-constraint fit on ρ and η : $\sigma(\rho) = 0.005$ [currently 0.034] $\sigma(\eta) = 0.004$ [currently 0.015]

M. Bona @ CKM2014

M. Bona @ CKM2014

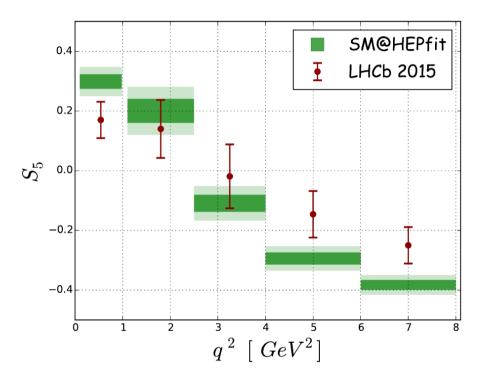

						-
Parameter	Error					
	Now	$50/{ m fb}$	$300/{\rm fb}$	$1000/\mathrm{fb}$	$3000/{\rm fb}$	
$\bar{\rho}$ (SM fit)	0.002	0.0039	0.0023	0.0013	0.00064] ◀───
$\bar{\eta}$ (SM fit)	0.021	0.0037	0.0019	0.0013	0.00068	
γ [°] (SM fit)	6.5	0.6	0.35	0.2	0.09	Crucial to improve
α [°] (SM fit)	5.5	0.6	0.37	0.2	0.1	SM predictions
β [°] (SM fit)	4	0.2	0.10	0.07	0.04	
β_s [°] (SM fit)	4	0.011	0.057	0.004	0.0023	of rare decays!
$\bar{\rho}$ (NP fit)	0.002	0.006	0.0034	0.0028	0.0022	
$\bar{\eta}$ (NP fit)	0.021	0.006	0.0053	0.0061	0.0052	
γ [°] (NP fit)	6.5	0.9	0.4	0.2	0.09	
α [°] (NP fit)	5.5	1	0.5	0.45	0.36	
β [°] (NP fit)	4	0.8	0.7	0.7	0.7	Need
β_s [°] (NP fit)	4	0.017	0.016	0.016	0.016	
C_{ε_K}	0.14	0.065	0.065	0.065	0.064	progress in
C_{B_d}	0.15	0.024	0.024	0.024	0.022	✓ V _{ub} and
Φ_{B_d}	2.8	0.48	0.36	0.36	0.35	
C_{B_s}	0.087	0.02	0.02	0.02	0.02	
Φ_{B_s}	0.96	0.26	0.11	0.063	0.038	Steady
$\Phi_{M_{12}}$ [°]	2.5	0.4	0.1	0.08	0.04	Steady
$\Phi_{\Gamma_{12}}$ [°]	_	1.2	0.4	0.24	0.12	 ← improvement
						Ĩ

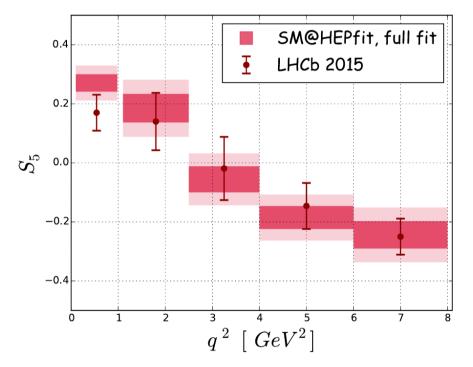
PP @ LHC, Pisa, 17/5/2016 L. Silvestrini

RARE DECAYS

- Rare and CP-violating decays are an excellent probe of NP
- Main (only) showstoppers are long-distance / infrared contributions to matrix elements
- $B_{d,s} \to \mu^+ \mu^-$ extremely clean: dominated by parametric error, well below current and future exp error
- LFV/LUV also very clean and very interesting

${\rm B}_{\rm s,d} \to \mu^+ \mu^-$

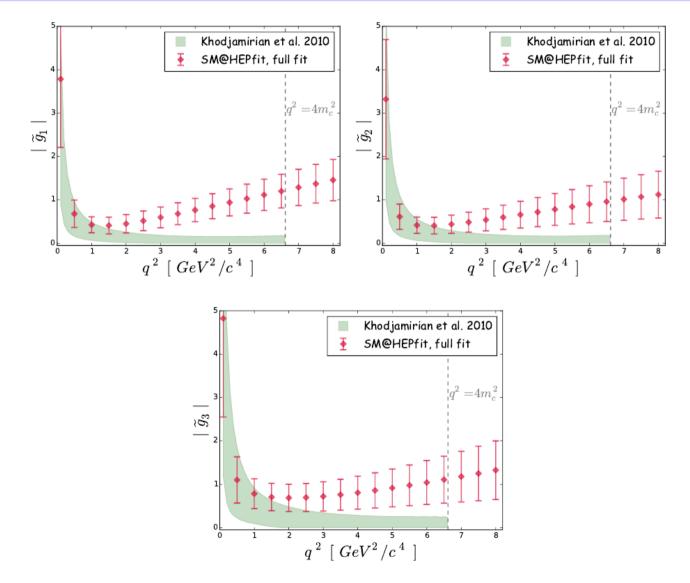



 $BR(B_s \rightarrow \mu\mu)_{exp} = (2.9 \pm 0.7)10^{-9}, BR(B_d \rightarrow \mu\mu)_{exp} = (0.39 \pm 0.15)10^{-9}$

Z-penguins/boxes vs y-penguins

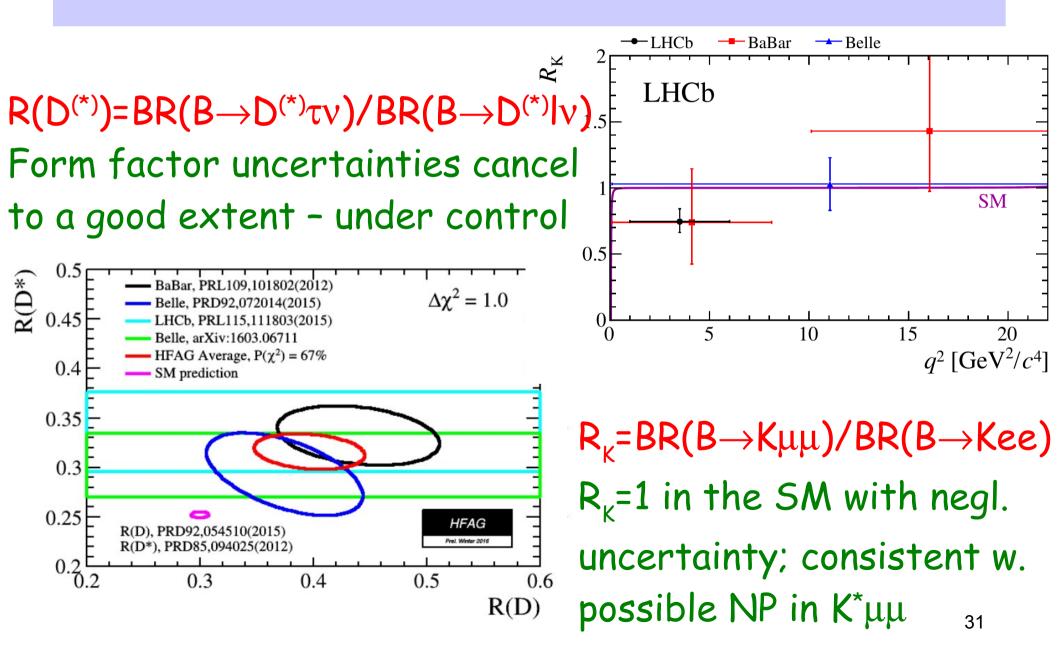
- $B_{sd} \rightarrow \mu^+ \mu^-$ not affected by photonic penguins \Rightarrow no long-distance contributions
- $b \rightarrow s\mu^{+}\mu^{-}$ has photon-mediated contributions: top penguins charm penguins New Physics New op's q²-dep. terms $C_{\rm g}(\rm m_{\rm b})$ $C_7(m_h)$
- Need to control the charm penguin to disentangle SM from NP in C_7^{eff} and C_{o}^{eff} PP @ LHC, Pisa, 17/5/2016

IMPACT OF CHARM LOOP



"Optimistic" evaluation of nonfactorizable contributions Conservative evaluation of nonfactorizable contributions

PP @ LHC, Pisa, 17/5/2016


SIZE OF CHARM LOOP

LESSONS FROM B $\rightarrow K^* \mu^+ \mu^-$

- Exp. data call for an extra contribution to the photonic penguin
- This contribution might come from hadronic effects or from NP
- With more data it may be possible to determine the q² dependence from data
- Need th breakthrough to disentangle NP in ΔC_9 from SM uncertainties

LEPTON UNIVERSALITY

LEPTOQUARKS AND LUV

- LUV in both b \rightarrow clv and b \rightarrow sll mediated by semileptonic operators
- NP in b \rightarrow clv must compete with tree-level SM, NP in b \rightarrow sll with loop-mediated SM:
 - LQ entering b→clv at tree level and b→sll at loop level Bauer & Neubert '15
 - LQ entering both at tree level, but with flavour symmetry protection Calibbi, Crivellin & Ota '15; Barbieri et al. '15

- heavy vectors with flavour symmetry PP @ LHC, Pisa, 17/5/2016

Greljo, Isidori & Marzocca '15; Buttazzo et al. '16

CONCLUSIONS

- In a global strategy for NP searches, improving the accuracy on FCNC and CPV processes has a key role to ensure that:
 - we are able to determine the flavour structure of any NP directly seen, and hopefully understand its origin; roughly 2x in $M_{NP} \Leftrightarrow 4x$ in exp & th $\Leftrightarrow 16x$ in L

 we increase the sensitivity of indirect searches (flavour has the lead in this field) and maybe detect an indirect NP signal

CONCLUSIONS II

- Intriguing hints of possible NP in LUV, look forward to Run II results
- Emphasis often on "golden modes", but a global experimental and theoretical effort is required to fully exploit the constraining power of flavour physics
- The complementarity of high-pT, LHCb, Belle-II and dedicated K and LFV experiments is crucial

PP @ LHC, Pisa, 17/5/2016

UTfit beyond the SM

- 1. fit simultaneously for CKM and NP
 - add most general NP to all sectors
 - use all available experimental info
 - find out how much room is left for NP in ΔF =2 transitions

Soares, Wolfenstein; Deshpande, Dutta, Oh; Silva, Wolfenstein; Cohen et al.; Grossman, Nir, Worah; Laplace et al; Ciuchini et al; Ligeti; CKMFitter; UTfit; Botella et al.; Agashe et al.; ...

2. perform an $\Delta F=2$ EFT analysis to

put bounds on the NP scale

and CPV couplings

- consider different choices of the FV

UTfit; Davidson, Isidori, Uhlig; Isidori, Nir, Perez;...

PP @ LHC, Pisa, 17/5/2016

1. Parameterization of generic NP contributions to the mixing amplitudes K mixing amplitude (2 real parameters): $\operatorname{Re} A_{\kappa} = C_{\Delta m_{\kappa}} \operatorname{Re} A_{\kappa}^{SM} \operatorname{Im} A_{\kappa} = C_{\varepsilon} \operatorname{Im} A_{\kappa}^{SM}$ $B_{d} \text{ and } B_{s} \text{ mixing amplitudes (2+2 real parameters):}$ $A_{q} e^{2i\phi_{q}} = C_{B_{q}} e^{2i\phi_{B_{q}}} A_{q}^{SM} e^{2i\phi_{q}^{SM}} = \left(1 + \frac{A_{q}^{NP}}{A_{q}^{SM}} e^{2i(\phi_{q}^{NP} - \phi_{q}^{SM})}\right) A_{q}^{SM} e^{2i\phi_{q}^{SM}}$

Observables:

$$\Delta m_{q/K} = C_{B_q/\Delta m_K} (\Delta m_{q/K})^{SM} \epsilon_K = C_{\epsilon} \epsilon_K^{SM}$$

$$A_{CP}^{B_d \to J/\psi K_s} = \sin 2(\beta + \phi_{B_d}) \qquad A_{CP}^{B_s \to J/\psi \phi} \sim \sin 2(-\beta_s + \phi_{B_s})$$

$$A_{SL}^q = \lim_{PP@\ LHC,\ Pisa,\ 17/5/2016} (\Gamma_{12}^q/A_q) \qquad \Delta \Gamma^q/\Delta m_q = \operatorname{Re}(\Gamma_{12}^q/A_q)$$
L. Silvestrini

					22
Parameter			Error		
	Now	$50/\mathrm{fb}$	$300/{\rm fb}$	$1000/\mathrm{fb}$	$3000/\mathrm{fb}$
$\Delta M_d \; [\mathrm{ps}^{-1}]$		0.0005	0.0002	0.0001	0.00006
$\Delta M_s \ [\mathrm{ps}^{-1}]$	0.021	0.005	0.002	0.001	0.0006
$\sin 2\beta$	0.022	0.008	0.0026	0.0018	0.001
γ [°]	6.5	0.9	0.4	0.2	0.09
α [°]	5.5	1	Belle II		
β_s [°]	4	0.26	0.11	0.06	0.034
V_{us}	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$			
V_{cb}	2.7%	1%	Belle II		
V_{ub}	10%	1%	Belle II		
x		$1.5\cdot 10^{-4}$	$4.5\cdot10^{-5}$	$3\cdot 10^{-5}$	$1.5\cdot 10^{-5}$
y		10^{-4}	$3\cdot 10^{-5}$	$2\cdot 10^{-5}$	10^{-5}
q/p		0.01	0.003	0.002	0.001
ϕ [°]		3	0.9	0.6	0.3
A_{Γ}		$4 \cdot 10^{-5}$	$12 \cdot 10^{-6}$	$8 \cdot 10^{-6}$	$4 \cdot 10^{-6}$
$\alpha_s(M_Z)$	0.0005	0.0002			
m_t	$760 { m ~MeV}$	$250 { m ~MeV}$	theory lim	ited	
m_b	$50 { m MeV}$	$10 { m MeV}$			
B_K	1.3%	0.1%			
F_{B_s}	$5 { m MeV}$	$1 {\rm MeV}$			
F_{B_s}/F_{B_d}	1.4%	0.5%			
$F_{B_s}\sqrt{B_{B_s}}$	3.8%	3%			
ξ	2.5%	0.5%			

Perugia

THE CHARM LOOP IN LCSR

• Working on the light-cone in the single-softgluon approximation (both conditions require $q^2 \ll 4m_c^2$), Khodjamirian et al obtain:

 $\Delta C_9^{(\bar{c}c,B\to K^*,\,\mathcal{M}_i)}(q^2) = (C_1 + 3C_2) g(m_c^2,q^2) + 2C_1 \tilde{g}^{\,(\bar{c}c,B\to K^*,\,\mathcal{M}_i)}(q^2) \,,$

function	$\tilde{g}^{(\bar{c}c,B\to K)}$	$\tilde{g}^{(\bar{c}c,B\to K^*,M_1)}$	$\tilde{g}^{(\bar{c}c,B\to K^*,M_2)}$	$\tilde{g}^{(\bar{c}c,B\to K^*,M_3)}$
centr.value	-0.041	0.26	0.27	0.46
Δ_{m_c}	+0.014	-0.08	-0.09	-0.15
Δ_{M^2}	$^{+0.00}_{-0.001}$	-0.04 + 0.07	-0.04 + 0.08	-0.07 + 0.12
Δ_{λ_B}	$-0.016 \\ +0.017$	$^{+0.30}_{-0.17}$	$^{+0.36}_{-0.18}$	$^{+0.75}_{-0.33}$
Δ_{tot}	$^{+0.022}_{-0.016}$	$^{+0.31}_{-0.19}$	$^{+0.37}_{-0.21}$	$^{+0.76}_{-0.37}$

@ $q^2 = 1 \text{ GeV}^2$

 $\left[\Delta C_7^{(\bar{c}c,B\to K^*\gamma)}\right]_1 \simeq \left[\Delta C_7^{(\bar{c}c,B\to K^*\gamma)}\right]_2 = (-1.2^{+0.9}_{-1.6}) \times 10^{-2}$

 $(a) q^2 = 0$

• We use this result as an estimate at low q^2

PP @ LHC, Pisa, 17/5/2016

THE HADRONIC ME

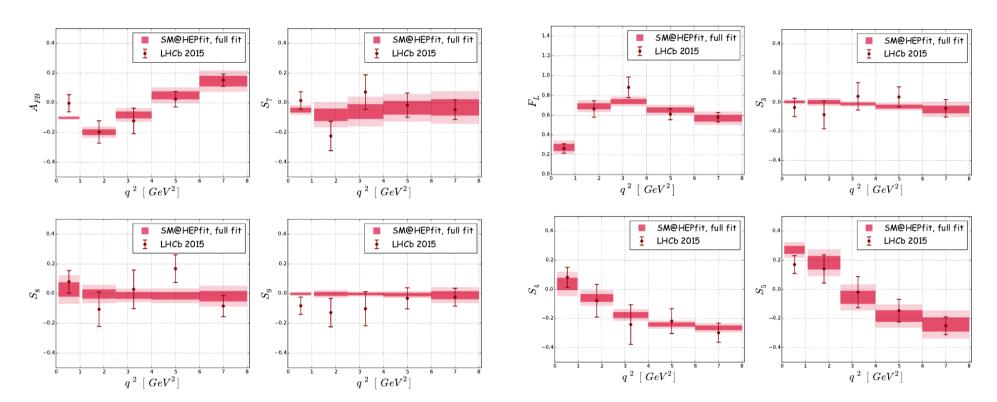
$$h_{\lambda}(q^2) = \frac{\epsilon_{\mu}^*(\lambda)}{m_B^2} \int d^4x e^{iqx} \langle \bar{K}^* | T\{j_{\rm em}^{\mu}(x)\mathcal{H}_{\rm eff}^{\rm had}(0)\} | \bar{B} \rangle$$
$$= h_{\lambda}^{(0)} + \frac{q^2}{1\,{\rm GeV}^2} h_{\lambda}^{(1)} + \frac{q^4}{1\,{\rm GeV}^4} h_{\lambda}^{(2)} ,$$

Parametrization by Jäger & Martin Camalich

$$\mathbf{h}_{\lambda}^{(0)} \sim \Delta C_7, \, \mathbf{h}_{\lambda}^{(1)} \sim \Delta C_9,$$

 $h_{\!\lambda}{}^{(2)}\,\text{not}\,\,a\,\,\text{shift}\,\,\text{of}\,\,\text{SM}\,\,\text{WC}$

Additional term to allow for breakdown of expansion @ $q^2 \sim 4m_c^2$

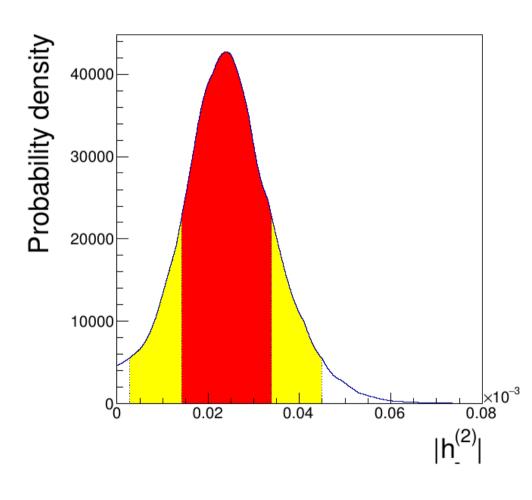

Expect $h_{(0)}/h_{(0)} \sim \Lambda/m$

PP @ LHC, Pisa, 17/5/2016

PHENOMENOLOGY

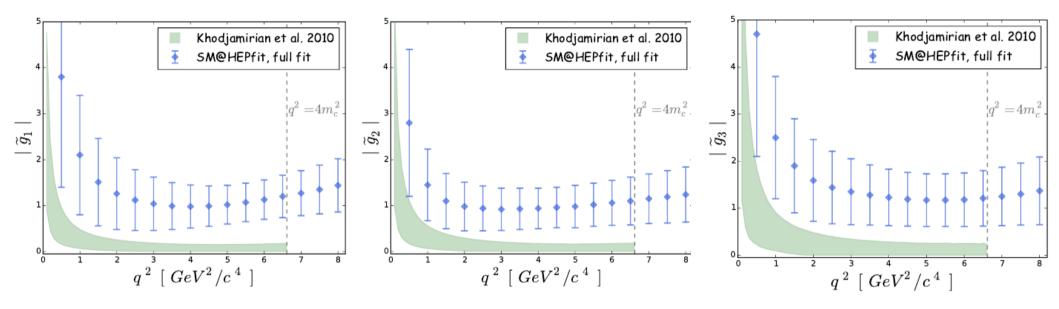
- Use LCSR form factors + QCDF corrections + Khodjamirian et al at $q^2=0$ and $q^2=1$
- Perform a Bayesian analysis using all available data
- Obtain posteriors for parameters and observables
- Remove data from the fit to obtain predictions and compare with data

FULL FIT

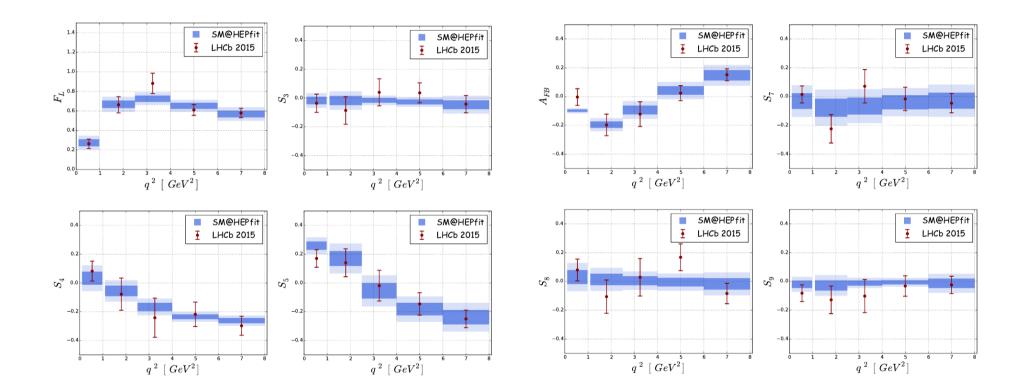


Posteriors for all observables and LHCb results. Dark: 68% probability, light: 95% probability

PP @ LHC, Pisa, 17/5/2016


q^2 bin [GeV ²]	Observable	measurement	full fit	prediction	$\mathbf{p} - \mathbf{value}$	Observable	measurement	full fit	prediction	p-value
[0.1, 0.98]	$F_L \\ S_3 \\ S_4 \\ S_5 \\ A_{FB} \\ S_7 \\ S_8 \\ S_9$	$\begin{array}{c} 0.264 \pm 0.048 \\ -0.036 \pm 0.063 \\ 0.082 \pm 0.069 \\ 0.170 \pm 0.061 \\ -0.003 \pm 0.058 \\ 0.015 \pm 0.059 \\ 0.080 \pm 0.076 \\ -0.082 \pm 0.058 \end{array}$	$\begin{array}{c} 0.275 \pm 0.035 \\ 0.002 \pm 0.008 \\ 0.037 \pm 0.042 \\ 0.271 \pm 0.027 \\ -0.102 \pm 0.006 \\ -0.049 \pm 0.016 \\ 0.027 \pm 0.048 \\ -0.002 \pm 0.007 \end{array}$	$\begin{array}{c} 0.257 \pm 0.035 \\ 0.002 \pm 0.008 \\ -0.025 \pm 0.047 \\ 0.301 \pm 0.024 \\ -0.104 \pm 0.006 \\ -0.043 \pm 0.017 \\ -0.004 \pm 0.046 \\ -0.002 \pm 0.007 \end{array}$	0.13	$\begin{array}{c} P_1 \\ P_2 \\ P_3 \\ F_L \\ BR \cdot 10^7 \end{array}$	$\begin{array}{c} -0.23 \pm 0.24 \\ 0.05 \pm 0.09 \\ -0.07 \pm 0.11 \\ 0.16 \pm 0.08 \\ 3.1 \pm 1.0 \end{array}$	$\begin{array}{c} 0.00 \pm 0.01 \\ -0.040 \pm 0.00 \\ 0.00 \pm 0.01 \\ 0.170 \pm 0.04 \\ 1.4 \pm 0.1 \end{array}$	$\begin{array}{c} 0.00 \pm 0.01 \\ -0.040 \pm 0.00 \\ 0.00 \pm 0.01 \\ 0.18 \pm 0.05 \\ 1.4 \pm 0.1 \end{array}$	$\begin{array}{c} 0.34 \\ 0.32 \\ 0.53 \\ 0.82 \\ 0.06 \end{array}$
	P_5'	0.387 ± 0.142	0.774 ± 0.094	0.881 ± 0.082	0.0026			•		
[1.1, 2.5]	$F_L \\ S_3 \\ S_4 \\ S_5 \\ A_{FB} \\ S_7 \\ S_8 \\ S_9$	$\begin{array}{c} 0.663 \pm 0.083 \\ -0.086 \pm 0.096 \\ -0.078 \pm 0.112 \\ 0.140 \pm 0.097 \\ -0.197 \pm 0.075 \\ -0.224 \pm 0.099 \\ -0.106 \pm 0.116 \\ -0.128 \pm 0.096 \end{array}$	$\begin{array}{c} 0.691 \pm 0.030 \\ 0.000 \pm 0.013 \\ -0.059 \pm 0.027 \\ 0.183 \pm 0.046 \\ -0.198 \pm 0.019 \\ -0.081 \pm 0.042 \\ -0.003 \pm 0.031 \\ -0.002 \pm 0.013 \end{array}$	$\begin{array}{c} 0.688 \pm 0.034 \\ 0.001 \pm 0.013 \\ -0.070 \pm 0.032 \\ 0.208 \pm 0.057 \\ -0.200 \pm 0.022 \\ -0.056 \pm 0.049 \\ -0.004 \pm 0.033 \\ 0.002 \pm 0.013 \end{array}$	0.63		B —	→K*e⁺	e⁻	
	P_5'	0.298 ± 0.212	0.410 ± 0.099	0.460 ± 0.120	0.51					
[2.5, 4]	$F_L \\ S_3 \\ S_4 \\ S_5 \\ A_{FB} \\ S_7 \\ S_8 \\ S_9$	$\begin{array}{c} 0.882 \pm 0.104 \\ 0.040 \pm 0.094 \\ -0.242 \pm 0.136 \\ -0.019 \pm 0.107 \\ -0.122 \pm 0.086 \\ 0.072 \pm 0.116 \\ 0.029 \pm 0.130 \\ -0.102 \pm 0.115 \end{array}$	$\begin{array}{c} 0.739 \pm 0.025 \\ -0.012 \pm 0.009 \\ -0.176 \pm 0.020 \\ -0.055 \pm 0.045 \\ -0.082 \pm 0.023 \\ -0.059 \pm 0.050 \\ -0.012 \pm 0.023 \\ -0.003 \pm 0.009 \end{array}$	$\begin{array}{c} 0.729 \pm 0.028 \\ -0.014 \pm 0.010 \\ -0.179 \pm 0.021 \\ -0.055 \pm 0.052 \\ -0.082 \pm 0.025 \\ -0.080 \pm 0.055 \\ -0.012 \pm 0.023 \\ -0.003 \pm 0.009 \end{array}$	0.80		B —	γ Κ *μ⁺	μ-	
	P_5'	-0.077 ± 0.354	-0.130 ± 0.100	-0.130 ± 0.120	0.89					
[4, 6]	$F_L \\ S_3 \\ S_4 \\ S_5 \\ A_{FB} \\ S_7 \\ S_8 \\ S_9 \\ P'$	$\begin{array}{c} 0.610 \pm 0.055 \\ 0.036 \pm 0.069 \\ -0.218 \pm 0.085 \\ -0.146 \pm 0.078 \\ 0.024 \pm 0.052 \\ -0.016 \pm 0.081 \\ 0.168 \pm 0.093 \\ -0.032 \pm 0.071 \\ \end{array}$	$\begin{array}{c} 0.653 \pm 0.026 \\ -0.030 \pm 0.013 \\ -0.241 \pm 0.014 \\ -0.183 \pm 0.040 \\ 0.050 \pm 0.027 \\ -0.034 \pm 0.046 \\ -0.015 \pm 0.025 \\ -0.007 \pm 0.012 \\ \end{array}$	$\begin{array}{c} 0.661 \pm 0.030 \\ -0.030 \pm 0.015 \\ -0.239 \pm 0.016 \\ -0.205 \pm 0.046 \\ 0.067 \pm 0.032 \\ -0.037 \pm 0.055 \\ -0.026 \pm 0.026 \\ -0.012 \pm 0.014 \end{array}$	0.50		or a g kpect			el
	P'_5	-0.301 ± 0.160	-0.388 ± 0.087	-0.440 ± 0.100	0.46				1	
[6, 8]	$F_L \\ S_3 \\ S_4 \\ S_5 \\ A_{FB} \\ S_7 \\ S_8 \\ S_9 \\ P_5'$	$\begin{array}{c} 0.579 \pm 0.048 \\ -0.042 \pm 0.060 \\ -0.298 \pm 0.066 \\ -0.250 \pm 0.061 \\ 0.152 \pm 0.041 \\ -0.046 \pm 0.067 \\ -0.084 \pm 0.071 \\ -0.024 \pm 0.060 \\ -0.505 \pm 0.124 \end{array}$	$\begin{array}{c} 0.569 \pm 0.034 \\ -0.050 \pm 0.026 \\ -0.264 \pm 0.016 \\ -0.241 \pm 0.048 \\ 0.146 \pm 0.036 \\ -0.031 \pm 0.055 \\ -0.017 \pm 0.035 \\ -0.011 \pm 0.027 \\ -0.491 \pm 0.098 \end{array}$	$\begin{array}{c} 0.517 \pm 0.070 \\ -0.006 \pm 0.054 \\ -0.224 \pm 0.037 \\ -0.164 \pm 0.100 \\ 0.099 \pm 0.077 \\ 0.010 \pm 0.110 \\ 0.039 \pm 0.055 \\ 0.018 \pm 0.047 \\ \end{array}$	0.82		strib value			
[0.1,2]	_	0.58 ± 0.09	0.65 ± 0.04	0.67 ± 0.04	0.36					
$[0.1, 2] \\ [2, 4.3] \\ [4.3, 8.68]$	$\mathrm{BR}\cdot 10^7$	$\begin{array}{c} 0.29 \pm 0.05 \\ 0.47 \pm 0.07 \end{array}$	$\begin{array}{c} 0.33 \pm 0.03 \\ 0.45 \pm 0.05 \end{array}$	$\begin{array}{c} 0.35 \pm 0.04 \\ 0.47 \pm 0.11 \end{array}$	0.35 1.0				42	
<u> </u>	$\mathrm{BR}_{B\to K^*\gamma}\cdot 10^5$	4.33 ± 0.15	4.35 ± 0.14	4.61 ± 0.56	0.63				72	

NEW PHYSICS OR SM?


- Coefficient of q⁴ term
- Cannot be reabsorbed in WC of dim-6 operators
- Distribution
 obtained using LCSR
 estimate at low q²

GENERALIZED FIT W. NO TH INPUT ON POWER CORRS

Fitted power corrections are in the ballpark of Khodjamirian estimate. However, q⁴ term now compatible with zero. Need more data and/or theory progress to clarify this issue.

GENERALIZED FIT W. NO TH INPUT ON POWER CORRS

Future projections: exp err/10

	using ref. [47] at $q^2 < 1 \text{ GeV}^2$		not using ref. [47]		
Parameter	$rac{\delta \mathrm{abs}}{\mathrm{abs}}$	$\delta { m arg} \; ({ m rad})$	$rac{\delta \mathrm{abs}}{\mathrm{abs}}$	$\delta { m arg} \; ({ m rad})$	
$h_0^{(0)}$	$\pm 10\%$	± 0.07	$\pm 10\%$	± 0.09	
$h_0^{(1)}$	$\pm 20\%$	± 0.2	$\pm 20\%$	± 0.3	
$h_0^{(2)}$	$\pm 30\%$	± 0.3	$\pm 30\%$	± 0.4	
$egin{array}{c} h^{(0)}_+ \ h^{(1)}_+ \ h^{(2)}_+ \ h^{(2)}_+ \end{array}$	$\pm 80\%$	± 1.4	$\pm 90\%$	± 1.4	
$h_{+}^{(1)}$	$\pm 70\%$	± 1.6	$\pm 60\%$	± 1.4	
$h_{+}^{(2)}$	$\pm 30\%$	± 0.4	$\pm 30\%$	± 0.3	
$h_{-}^{(0)}$	$\pm 40\%$	± 0.8	$\pm 50\%$	± 1.0	
$h_{-}^{(1)}$	$\pm 30\%$	± 0.5	$\pm 30\%$	± 0.5	
$h_{-}^{(2)}$	$\pm 14\%$	± 0.1	$\pm 14\%$	± 0.2	