STATI ESOTICI (X, Y, Z, PENTAQUARK, ...)

<u>Marco Pappagallo</u>¹, Leonardo Cristella¹, Sandro Palestini²

¹University of Bari & INFN ²CERN

pp @ LHC 17 May 2016, Pisa, Italy

OUTLINE

Introduction

- > Search for $X_b \rightarrow Y(1S) \pi^+ \pi^-$
- Evidence/Observation of X(4140)
- > Search for X(5568)[±] \rightarrow B⁰_s π^{\pm}
- \succ Observation of two Pentaquarks P_c^+
 - ≻ Amplitude Analysis of $\Lambda_b \rightarrow J/\psi$ p K⁻ Decay
 - Model Independent Analysis

> Prospects for RUN II and beyond

INTRODUCTION: "EXOTIC"

Tetra- and Penta-quarks conceived at the birth of the quark model

lume 8, number 3	PHYSICS LETTERS	1 February 1964
A SCHEMA	TIC MODEL OF BARYONS AND	MESONS *
Califo	M.GELL-MANN rnia Institute of Technology, Pasadena, Califor	rnia
	Received 4 January 1964	
A s constr charg baryo prope We th the tr anti-t constr (q q q) of $(q \bar{q})$ baryo tation	simpler and more elegant scheme of succed if we allow non-integral values. We can dispense entirely with a b if we assign to the triplet t the rties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon n en refer to the members u^{3} , $d^{-\frac{1}{3}}$, iplet as "quarks" 6) q and the mem- riplet as anti-quarks \bar{q} . Baryons c ructed from quarks by using the co , (qqq \bar{q}), etc., while mesons ar), (qq $\bar{q}\bar{q}$), etc. It is assuming that a configuration (qqq) gives just the s 1, 8, and 10 that have been observed	the basic following number $\frac{1}{3}$. and $s^{-\frac{1}{3}}$ of abers of the an now be ombinations e made out t the lowest e represen- rved, while

17/05/16, pp@LHC, Pisa , Italy

MODELS FOR TETRA- AND PENTA-QUARKS

17/05/16, pp@LHC, Pisa, Italy

THE X(3872) STATE

Discovered in 2003 by the Belle collaboration in the $B \to KX(3872)$ decay where $X(3872) \to J/\psi \pi^+ \pi^-$

- $\circledast\,$ Mass is roughly equal to $m(D^0)+m(D^{*0})$
- $\circledast~{\rm Width}$ is surprisingly narrow (< 1.2 MeV)
- $\circledast\,$ Large production rate in $p\bar{p}$ collisions

LHC experiments are largely contributing to shed light on the nature of the X(3872) state

- > Determination of the quantum numbers [PRL 110, 222001 (2013)][PRD92, 011102 (2015)]
- > Measurement of $B(X(3872) \rightarrow \psi(2S) \gamma)/B(X(3872) \rightarrow J/\psi \gamma)$ [Nucl.Phys.B886 (2014) 665]
- > Precise mass measurement [EPJC 72 (2012) 1972] [JHEP 06 (2013) 065] $E_B = m(D^0 \bar{D}^{*0}) - m(X(3872)) = 3 \pm 192 \,\text{keV/c}^2 \longrightarrow Loosely bound in the molecule scenario}$
- > Production cross-section in *pp* collisions at $\sqrt{s} = 7$ TeV [EPJC 72 (2012) 1972, JHEP 1304, 154 (2013)]
- > Search for X(3872) $\rightarrow p\overline{p}$ [EPJC 73 (2013) 2462]

 $\frac{BR(X(3872)\to p\bar{p})}{BR(X(3872)\to J/\psi\pi^+\pi^-)} < 2.0\times 10^{-3}$

17/05/16, pp@LHC, Pisa, Italy

...AND FRIENDS

Eur.Phys.J. C74 (2014) 10, 2981

facabook	Pro	ofile	ec	lit	Friends	s 🔻 Netwo	rks	5
Idlebuuk	State	<i>M</i> , Me	VΓ, Me	V J ^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year St	atus
	X(3872)	3871.68 ± 0.1	7 < 1.2	1++	$B \rightarrow K(\pi^+\pi^- J/\psi)$ $p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) \dots$ $pp \rightarrow (\pi^+\pi^- J/\psi) \dots$	Belle [810, 1030] (>10), BaBar [1031] (8.6) CDF [1032, 1033] (11.6), D0 [1034] (5.2) LHCb [1035, 1036] (np)	2003 2003 2012	Ok Ok Ok
					$\vec{B} \to \vec{K} (\pi^+ \pi^- \pi^0 J/\psi)$ $B \to K (\gamma J/\psi)$	Belle [1037] (4.3), BaBar [1038] (4.0) Belle [1039] (5.5), BaBar [1040] (3.5) LHCb [1041] (> 10)	2005 2005	Ok Ok
Search 🔻					$B \to K(\gamma \psi(2S))$	BaBar [1040] (3.6), Belle [1039] (0.2) LHCb [1041] (4.4)	2008 1	VC!
Q	$Z_c(3885)^+ \ Z_c(3900)^+$	$3883.9 \pm 4.$ $3891.2 \pm 3.$	$5 25 \pm 12$ 3 40 ± 8	$2 1^{+-}$	$\begin{array}{l} B \to K(D\bar{D}^{*}) \\ Y(4260) \to \pi^{-}(D\bar{D}^{*})^{+} \\ Y(4260) \to \pi^{-}(\pi^{+}J/\psi) \end{array}$	Belle [1042] (6.4), BaBar [1043] (4.9) BES III [1044] (np) BES III [1045] (8), Belle [1046] (5.2) T. Xiao et al. [CLEO data] [1047] (>5)	2006 2013 1 2013	Ok VC! Ok
	$Z_c(4020)^+$ $Z_c(4025)^+$	$4022.9 \pm 2.4026.3 \pm 4.4026.3 \pm 4.4026.4026.4026.4026.4026.4026.4026.402$	$\begin{array}{c} 8 & 7.9 \pm 3. \\ 5 & 24.8 \pm 9 \end{array}$.7 ??- .5 ??-	$Y(4260, 4360) \rightarrow \pi^{-}(\pi^{+}h_{c})$ $Y(4260) \rightarrow \pi^{-}(D^{*}\bar{D}^{*})^{+}$	BES III [1048] (8.9) BES III [1049] (10)	2013 N 2013 N	NC!
And Backland and B	$Z_b(10610)^{-1}$	$10607.2 \pm 2.$	$0 18.4 \pm 2$.4 1+-	$\Upsilon(10860) \rightarrow \pi(\pi\Upsilon(1S, 2S, 3S))$ $\Upsilon(10860) \rightarrow \pi^-(\pi^+h_b(1P, 2P))$ $\Upsilon(10860) \rightarrow \pi^-(R\bar{B}^*)^+$	Belle [1050–1052] (>10) Belle [1051] (16) Belle [1052] (8)	2011 2011 2012	Ok Ok
Applications edit	$Z_b(10650)^{-1}$	$10652.2 \pm 1.$	$5 11.5 \pm 2$.2 1+-	$\Upsilon(10800) \rightarrow \pi^{-}(BB)^{+}$ $\Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}\Upsilon(1S, 2S, 3S)^{+}$ $\Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P, 2P))^{+}$ $\Upsilon(10860) \rightarrow \pi^{-}(B^{*}\bar{B}^{*})^{+}$	()) Belle [1050, 1051] (>10) Belle [1051, 1051] (16) Belle [1053] (6.8)	2012 1 2011 2 2011 2 2012 1	Ok Ok NC!
Photos	Y(3915)	3918.4 ± 1.9	20 ± 5	0/2:+	$B \rightarrow K(\omega J/\psi)$ $e^+e^- \rightarrow e^+e^-(\omega J/\psi)$	Belle [1088] (8), BaBar [1038, 1089] (19) Belle [1090] (7.7), BaBar [1091] (7.6)	200- 2009	4 Ok 9 Ok
	$\chi_{c2}(2P)$	3927.2 ± 2.6	24 ± 6	2^{++}	$e^+e^- \rightarrow e^+e^-(D\bar{D})$	Belle [1092] (5.3), BaBar [1093] (5.8)	200	5 Ok
Groups	X (3940) Y (4008)	3942_{-8}^{+1} 3891 ± 42	37_{-17}^{+17} 255 ± 42	1	$e^+e^- \rightarrow J/\psi (DD^*)$ $e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$	Belle [1086, 1087] (6) Belle [1046, 1094] (7.4)	200	5 NCI 7 NCI
aroups	$\psi(4040)$	4039 ± 1	80 ± 10	1	$e^+e^- \to (D^{(*)}\bar{D}^{(*)}(\pi))$	PDG [1]	197	8 Ok
	$Z(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	??+	$e^+e^- \rightarrow (\eta J/\psi)$ $\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle [1095] (6.0) Belle [1096] (5.0), BaBar [1097] (1.1)	201	8 NCI
31 Events	Y(4140)	4145.8 ± 2.6	18 ± 8	? ^{?+}	$B^+ \to K^+(\phi J/\psi)$	CDF [1098] (5.0), Belle [1099] (1.9), LHCb [1100] (1.4), CMS [1101] (>5)	200) NC!
Marketolace	$\psi(4160)$	4153 ± 3	103 ± 8	1	$e^+e^- \rightarrow (D^{(*)}\bar{D}^{(*)})$	D0 [1102] (3.1) PDG [1]	197	8 Ok
	X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow (\eta J/\psi)$ $e^+e^- \rightarrow J/\psi (D^*\bar{D}^*)$	Belle [1095] (6.5) Belle [1087] (5.5)	201	3 NCI 7 NCI
🖪 it ika	$Z(4200)^+$	4196_{-30}^{+35}	370^{+99}_{-110}	1+-	$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle [1103] (7.2)	201	4 NC
	$Z(4250)^+$ Y(4260)	4248_{-45}^{+100} 4250 ± 9	177_{-72}^{+021} 108 ± 12	1	$B^{0} \rightarrow K^{-}(\pi^{+}\chi_{c1})$ $e^{+}e^{-} \rightarrow (\pi\pi J/\psi)$	Belle [1096] (5.0), BaBar [1097] (2.0) BaBar [1104, 1105] (8), CLEO [1106, 1107] (200 11) 200	3 NC! 5 Ok
	1 ° ′					Belle [1046, 1094] (15), BES III [1045] (np)	
					$e^+e^- \rightarrow (f_0(980)J/\psi)$ $e^+e^- \rightarrow (\pi^- Z_*(3900)^+)$	BaBar [1105] (np), Belle [1046] (np) BES III [1045] (8), Belle [1046] (5.2)	201:	2 Ok 3 Ok
					$e^+e^- \rightarrow (\gamma X(3872))$	BES III [1108] (5.3)	201	3 NCI
	Y(4274)	4293 ± 20	35 ± 16	? _{?+}	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [1098] (3.1), LHCb [1100] (1.0), CMS [1101] (>3), D0 [1102] (np)	201	I NC!
	X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- \to e^+e^-(\phi J/\psi)$	Belle [1109] (3.2)	200	9 NC!
	Y(4360) $Z(4430)^+$	4354 ± 11 4458 ± 15	78 ± 16 166^{+37}	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$ $\bar{B}^0 \rightarrow K^-(\pi^+\psi(2S))$	Belle [1110] (8), BaBar [1111] (np) Belle [1112, 1113] (6.4), BaBar [1114] (2.4)	200	7 Ok 7 Ok
	2(1100)	100 1 10	100-32	-	D -/ II (# \$(20))	LHCb [1115] (13.9)	200	04
	144000	100.1+9	00+41		$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle [1103] (4.0)	201	4 NC!
	X(4630) Y(4660)	4634_{-11}^{+++} 4665 ± 10	92_{-32}^+ 53 ± 14	1	$e^+e^- \rightarrow (\Lambda_c^+\Lambda_c^-)$ $e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1116] (8.2) Belle [1110] (5.8), BaBar [1111] (5)	200'	7 NC! 7 Ok
	Υ(10860)	10876 ± 11	55 ± 28	1	$e^+e^- \rightarrow (B^{(*)}_{(s)}\bar{B}^{(*)}_{(s)}(\pi))$	PDG [1]	198	5 Ok
					$e^+e^- \rightarrow (\pi\pi\Upsilon(1S,2S,3S))$	Belle [1051, 1052, 1117] (>10)	200	7 Ok
					$e^+e^- \rightarrow (f_0(980)\Upsilon(1S))$ $e^+e^- \rightarrow (\pi Z_c(10610, 10670))$	Belle [1051, 1052] (>5) Belle [1051, 1052] (>10)	201	l Ok
					$e^+e^- \rightarrow (\pi Z_b(10010, 10650))$ $e^+e^- \rightarrow (n\Upsilon(1S, 2S))$	Belle [986] (10)	201	2 Ok
					$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(1D))$	Belle [986] (9)	201	2 Ok
	$Y_b(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(nS))$	Belle [1118] (2.3)	200	3 NC!

17/05/16, pp@LHC, Pisa, Italy

Search for X_b [Beauty partner of the X(3872)]

ATLAS: Phys. Lett. B 740, 199 (2015)

CMS: Phys. Lett. B 727 (2013) 57

17/05/16, pp@LHC, Pisa , Italy

Heavy quark symmetry suggests a hidden-beauty partner X_b analogous of X_c . Molecular (Swanson, 2004) and tetraquark r	
suggest to search it close to DD tilleshold.	nodels
CMS and ATLAS looked for $X_b \to Y(1S) \pi^+\pi^-$ decay seeming	y
Analogous to $X(3872) \rightarrow J / \psi \pi^{+}\pi^{-}$ Analysis strategy : search for a peak other than known $Y(2S) \& Y(3S)$ in the $Y(1S) \pi^{+}\pi^{-}$ spectrum within 10-11 <i>GeV</i>)

According to Karliner & Rosner [PRD91 (2015) 014014], this decay should be forbidden by G-parity conservation; while for the X(3872) the isospin-conserving decay to $\omega J/\psi$ was kinematically suppressed, the same is not true for a bottomonium-like $J^{PC} = 1^{++}$ counterpart. The strategy for X_b observation should include search of $X_b \to \Upsilon(1S) \omega(\to \pi^+\pi^-\pi^0), X_b \to \chi_{b1}(1P) (\to \Upsilon(1S) \gamma) \pi^+\pi^-, X_b \to \Upsilon(3S) \gamma$

17/05/16, pp@LHC, Pisa, Italy

Observation of a peaking structure in the J/ $\psi \phi$ mass spectrum from B⁺ \rightarrow J/ $\psi \phi$ K⁺ decays

17/05/16, pp@LHC, Pisa , Italy

X(4140): A BIT OF HISTORY

CDF: Evidence/"Observation" in $B^+ \rightarrow J/\psi \phi K^+$ [PRL 102, 242002 (2009), arXiv: 1101.6058]

X(4140)

X(4274)

) MeV

MeV

$$m = 4143.0^{+2.9}_{-3.0} \pm 0.6 \text{ MeV}$$

$$\Gamma = 15.3^{+10.4}_{-6.1} \pm 2.5 \text{ MeV}$$

$$V = 4274.4^{+8.4}_{-6.7} \pm 1$$

$$\Gamma = 32.3^{+21.9}_{-15.3} \pm 7$$

$$\begin{bmatrix} m = 4274.4^{+8.4} \\ -6.7 \pm 1.9 \\ \Gamma = 32.3^{+21.9} \\ -15.3 \pm 7.6 \end{bmatrix}$$

$$15.3^{+10.4}_{-6.1} \pm 2.5 \text{ MeV}$$
 $\Gamma = 32.3^{+21}$

- Belle: No evidence of X(4140) in $\gamma\gamma \rightarrow J/\psi \phi$. Observation of a new state X(4350) [PRL 104, 112004 (2010)]
- \blacktriangleright LHCb: No evidence of X(4140)/X(4274) in B decays but UL's don't disprove them [PRD 85, 091103(R) (2012)]
- D0: "Threshold enhancement consistent with the X(4140) \geq (3.1σ) ... Second structure consistent with X(4350)" [PRD89] 012004 (2014)]
- CMS: Peak in $J\psi \phi$ consistent with X(4140). Evidence of a \geq 2nd peak affected by reflections [PLB 734 (2014) 261]
- BaBar: No evidence of X(4140)/X(4274) [PRD 91, 012003 (2015)] \geq
- D0: Evidence of X(4140) in prompt production [PRL 115, 232001] (2015)]

17/05/16, pp@LHC, Pisa, Italy

17/05/16, pp@LHC, Pisa, Italy

Search for structure in the $B_{\rm s}{}^0\pi^{\!\pm}$ invariant mass spectrum

17/05/16, pp@LHC, Pisa, Italy

A New $\mathbf{B}^{0}{}_{s}\pi^{\pm}$ State Claimed by $\mathbf{D}\emptyset$

Claimed observation with 5.1σ significance of an exotic state $\checkmark X(5568) \pm B_{s}^{0} \pi^{\pm}, B_{s}^{0} \rightarrow J/\psi \phi, J/\psi \rightarrow \mu^{+} \mu^{-}, \phi \rightarrow K^{+} K^{-}$ $M = 5567.8 \pm 2.9^{+0.9}_{-1.9} MeV/c^2$ $\Gamma = 21.9 \pm 6.4^{+5.0}_{-2.5} \text{ MeV}/c^2$ ✓ Fraction of B_s^{0} from X[±] decay: $\rho_x^{D\emptyset} = (8.6 \pm 1.9 \pm 1.4)$ % "Cone" cut: $\Delta \mathbf{R} = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.3$ $N(B_{c}) \sim 5500$ $N(X) = 133 \pm 31$ $\sigma_{\text{Res}} \sim 30 \text{ MeV}$ D0 Run II, 10.4 fb1 events / 8 MeV/c² with background shape fixed N events / 20 MeV/ 1000 200 Background 60 Signa 40 z 30 20 10 **4**8 5.2 5.4 5.6 5.8 5 5.55 5.5 5.6 5.65 57 575 59 [GeV/c²] $m (J/\psi \phi)$ $m (B_s^0 \pi^{\pm})$ [GeV/c²]

17/05/16, pp@LHC, Pisa , Italy

JUST FOR CURIOSITY...

LHCb-CONF-2016-004

If $\rho_X^{\text{LHCb}} = \rho_X^{\text{DØ}} = 8.6\%$, how would the X(5568) signal look like?

JUST FOR CURIOSITY...

LHCb-CONF-2016-004

If $\rho_X^{\text{LHCb}} = \rho_X^{\text{DØ}} = 8.6\%$, how would the X(5568) signal look like?

17/05/16, pp@LHC, Pisa, Italy

Observation of two pentaquarks $P_c^+ \rightarrow J/\psi p$ (Amplitude analysis of $\Lambda_b \rightarrow J/\psi p K^-$)

17/05/16, pp@LHC, Pisa , Italy

K.H. Hicks, "On the conundrum of the pentaquark", Eur.Phys.J. H37 (2012) 1

17/05/16, pp@LHC, Pisa, Italy

FIT WITH $\land \Rightarrow pK$ STATES ONLY

[LHCb: PRL 115, 07201 (2015)]

Use of extended model, so all possible known Λ^* amplitudes: m_{Kp} projection looks fine, but...

17/05/16, pp@LHC, Pisa, Italy

LHCb ГНСр

FIT WITH $\land \Rightarrow pK$ STATES ONLY

[LHCb: PRL 115, 07201 (2015)]

Extended Λ^* model:

>...the fit projection can't reproduce the peaking structure in J/ψ p >Adding non-resonant term, Σ^* 's or extra unknown Λ^* 's doesn't help

17/05/16, pp@LHC, Pisa, Italy

LHCD THCD

ADDING $P_c \rightarrow J/\Psi p$ AMPLITUDES

<u>Reduced Λ* model + 2 Pentaquarks decaying to J/ψ p</u>

Best fit has J^P=(3/2⁻, 5/2⁺), also (3/2⁺, 5/2⁻) & (5/2⁺, 3/2⁻) are preferred

Adding more amplitudes doesn't improve the fit quality

State	Mass (MeV)	Width (MeV)	Fit fraction (%)
P _c (4380) ⁺	$4380 \pm 8 \pm 29$	$205 \pm 18 \pm 86$	$8.4{\pm}0.7{\pm}4.2$
P _c (4450) ⁺	$4449.8 {\pm} 1.7 {\pm} 2.5$	$39 \pm 5 \pm 19$	$4.1{\pm}0.5{\pm}1.1$

17/05/16, pp@LHC, Pisa, Italy

DO WE REALLY NEED 2 P_c+'S? YES

[LHCb: PRL 115, 07201 (2015)]

17/05/16, pp@LHC, Pisa, Italy

LHCb ГНСр

ARGARD DIAGRAMS

[LHCb: PRL 115, 07201 (2015)]

 $P_c{}^+$ amplitudes for 6 m(J/ $\!\psi$ p) bins between + $\!\Gamma$ & - $\!\Gamma$ around the resonance mass

➢ Good evidence for the resonant character of P_c(4450)⁺
 ➢ The errors for P_c(4380)⁺ are too large to be conclusive

17/05/16, pp@LHC, Pisa, Italy

Model-independent evidence for J/ψ p contributions to $\Lambda_b \rightarrow J/\psi$ p K⁻

17/05/16, pp@LHC, Pisa, Italy

shapes or their interference patterns!

17/05/16, pp@LHC, Pisa , Italy

RUN II and Beyond

17/05/16, pp@LHC, Pisa, Italy

X(3872) & QUARKONIA-LIKE STATES

> X(3872)

- \succ Precise mass measurements. Why so close to D⁰D^{*0} threshold?
- Search for new decay modes: (e.g.) χ_{c1} π π
- > Confirmation of $J/\psi \omega$ or $D^0 \overline{D^{*0}}$ decay modes
- > Production measurements at 13 TeV (prompt and non-prompt)

17/05/16, pp@LHC, Pisa, Italy

X(3872) & QUARKONIA-LIKE STATES Charmonium-like states \succ Search for X(4140) \rightarrow J/ $\psi \phi$ in B \rightarrow J/ $\psi \phi$ K and B_s \rightarrow $J/\psi \phi \phi$ decays \succ Search for the missing $\chi_{c0}(2P)$ and $\chi_{c2}(2P)$ \geq Exploration of $D_{(s)}D_{(s)}$ mass spectra from B decays > Determination of spin-parity \succ Central Exclusive Production Search for X_b

TETRA/PENTAQUARKS

17/05/16, pp@LHC, Pisa , Italy

AMPLITUDE ANALYSES

Many studies involved b-hadron decays with vectors into the final states Multidimensional phase-space

Why amplitude analysis are strongly recommended?							
(e.g.) Natural width of Z(4430) (MeV)							
State	1D	2 D	4D				
Belle	$45 {}^{+18}_{-13} {}^{+30}_{-13}$	107^{+86} -43 ⁺⁷⁴ -56	$200 {}^{+41}_{-46} {}^{+26}_{-35}$				
LHCb			$172 \pm 13 {}^{+37}_{-34}$				

- Broad structures may look narrow(er) in 1D mass projections.
- Amplitude analysis is a powerful tool to probe the quantum numbers and resonant character of the intermediate states.

Back-up slides

17/05/16, pp@LHC, Pisa, Italy

FIRST OBSERVATION OF $\Lambda_b \rightarrow J/\Psi K^- p$

[LHCb: PRL 111 (2013) 102003]

Why did LHCb arrive first? The decay was not observed before!

✓ J/ ψ into final state→ Large trigger efficiency ✓ 4 Tracks →Large detection efficiency ✓ Large Λ_b production

17/05/16, pp@LHC, Pisa , Italy

PENTAQUARK P_c+

- > Tightly bound
 - $\checkmark\,$ Jaffe, PRD15(1977) 267 $\,$
 - ✓ Strottman, PRD20(1979) 748
 - ✓ Maiani et al. PRD71(2005)014028
- Molecular model with meson exchange for binding
 - ✓ Törnqvist, Z.Phys.C61(1994) 525
- Others (postdictions):
 - ✓ Rescattering, "Cusps"

A narrow pentaquark state challenges many models

PRD 92 (2015) 7, 071502

17/05/16, pp@LHC, Pisa, Italy

How to model a single term

17/05/16, pp@LHC, Pisa , Italy

17/05/16, pp@LHC, Pisa, Italy

A* DECAY MODELS

[LHCb: PRL 115, 07201 (201						
Two models: Reduced and Extended $L = $ angular momentum between J/ ψ and Λ^*					lo high-J ^P high mass states, limited <i>L</i>	All states, all <i>L</i>
	State	J^P	$M_0 ({\rm MeV})$	$\Gamma_0 \ ({\rm MeV})$	# Reduced	# Extended
	$\Lambda(1405)$	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4
	$\Lambda(1520)$	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
	$\Lambda(1600)$	$1/2^{+}$	1600	150	3	4
	$\Lambda(1670)$	$1/2^{-}$	1670	35	3	4
A 11 1	$\Lambda(1690)$	$3/2^{-}$	1690	60	5	6
All known	$\Lambda(1800)$	$1/2^{-}$	1800	300	4	4
Λ^* states	$\Lambda(1810)$	$1/2^{+}$	1810	150	3	4
	$\Lambda(1820)$	$5/2^{+}$	1820	80	1	6
	$\Lambda(1830)$	$5/2^{-}$	1830	95	1	6
	$\Lambda(1890)$	$3/2^+$	1890	100	3	6
	$\Lambda(2100)$	$7/2^{-}$	2100	200	1	6
	$\Lambda(2110)$	$5/2^{+}$	2110	200	1	6
	$\Lambda(2350)$	$9/2^{+}$	2350	150	0	6
	$\Lambda(2585)$?	≈ 2585	200	0	6
			# of fit	t parameters	s: 64	146
17/05/16, pp@LHC, Pisa, Italy M. Pappagallo				41		

FIT RESULT (I)

LHCb-CONF-2016-004

(Both modes combined: $p_T(B_s) > 5 \text{ GeV/c}$)

Fit without signal component

No "Cone" cut applied

17/05/16, pp@LHC, Pisa, Italy

17/05/16, pp@LHC, Pisa , Italy

SIGNIFICANCES AND RESULTS

[LHCb: PRL 115, 07201 (2015)]

 ✓ Simulations of pseudo-experiments are used to quote the significances: ✓ Significance of P_c(4450)⁺ state is 12σ ✓ Significance of P_c(4380)⁺ state is 9σ ✓ Main systematic uncertainty: difference between extended and reduced fit models. Taken in account while computing the significances 							
State	Mass (MeV)	Width (MeV)	Fit fraction (%)				
P _c (4380) ⁺	$4380 \pm 8 \pm 29$	$205 \pm 18 \pm 86$	$8.4 \pm 0.7 \pm 4.2$				
P _c (4450) ⁺	$4449.8 {\pm} 1.7 {\pm} 2.5$	$39 \pm 5 \pm 19$	$4.1 \pm 0.5 \pm 1.1$				
$\Lambda(1405)$ 15±1±6							

17/05/16, pp@LHC, Pisa , Italy

Λ(1520)

M. Pappagallo

 $19 \pm 1 \pm 4$