STUDYING THE SEISMIC NEWTONIAN NOISE WITH AN ARRAY OF ATOM INTERFEROMETERS

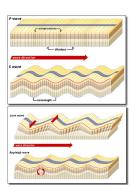
 $\frac{\text{S. Pelisson}^{[1,2]}, \text{B. Canuel}^{[1,2]}, \text{A. Bertoldi}^{[1,2]}, \text{S. Gaffet}^{[1,3]}, \text{R. Geiger}^{[1,4]}, \text{A. Landragin}^{[1,4]}}{\text{G. Lefèvre}^{[1,2]}, \text{J. Harms}^{[5,6]}, \text{I. Riou}^{[1,2]}, \text{P. Bouyer}^{[1,2]}}$

[1] MIGA Consortium [2] LP2N, Université Bordeaux-IOGS-CNRS [3] GEOAZUR, UNSA, CNRS, IRD, OCA [4] LNE-SYRTE, Observatoire de Paris [5] INFN, Sezione di Firenze [6] Università degli studi 'Carlo Bo'

25th May 2016

LAPHIA Laser & Photonics in Aquitaine

- 1. Newtonian Noise Modelling
- 2. Seismic datas
- 3. Newtonian Noise on MIGA instrument
- 4. Rejection method
- 5. Results and perspectives


Newtonian Noise (NN) Modelling

Atmospheric NN

- Quasi-static temperature perturbations
- Infrasound waves created by pressure fluctuations

Seismic NN

- Seismic spectra vary between different sites
- 2 wave-contributions:
 - ▶ Body-waves \Rightarrow P-,S-waves
 - ► Surface waves ⇒ Love waves, Rayleigh waves
- Dominant contribution at low frequencies (10 mHz - 1 Hz):
 Rayleigh waves

Rayleigh wave field

Gravity perturbation for a single test mass

- Field dominated by fundamental Rayleigh waves
- Underground cavity neglected
- Frequency-independent speed

$$\delta\phi(\vec{r}_{o},t) = 2\pi G \rho_{o} A e^{i(\vec{k}_{\varrho} \cdot \vec{\varrho}_{o} - \omega t)} \left(\underbrace{-2e^{-hq_{z}^{p}}}_{eva. \ wave} + (1 + \zeta(k_{\varrho})) \underbrace{e^{-hk_{\varrho}}}_{surf. \ displ.} \right)$$

where

$$A = rac{\xi_z(ec{\mathsf{o}},\mathsf{o})}{q_z^P - k_\varrho \zeta(k_\varrho)}$$

J. Harms, Living Rev. Gen. Rel. 18, 3 (2015).

Rayleigh wave field

Gravity perturbation for a single test mass

- Field dominated by fundamental Rayleigh waves
- Underground cavity neglected
- Frequency-independent speed

$$\delta\phi(\vec{r}_{o},t) = 2\pi G \rho_{o} A e^{i(\vec{k}_{\varrho} \cdot \vec{\varrho}_{o} - \omega t)} \left(\underbrace{-2e^{-hq_{z}^{p}}}_{eva.\ wave} + (1 + \zeta(k_{\varrho})) \underbrace{e^{-hk_{\varrho}}}_{surf.\ displ.} \right)$$

where

$$A = \frac{\xi_z(\vec{0}, 0)}{q_z^p - k_\varrho \zeta(k_\varrho)} \xrightarrow{\text{Vertical displacement field}}$$

J. Harms, Living Rev. Gen. Rel. 18, 3 (2015).

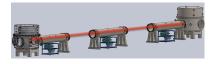
Rayleigh wave field

Gravity perturbation for a single test mass

- Field dominated by fundamental Rayleigh waves
- Underground cavity neglected
- Frequency-independent speed

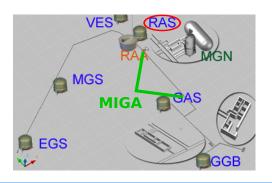
$$\delta\phi(\vec{r}_{\mathrm{o}},t) = 2\pi G
ho_{\mathrm{o}} A e^{i(\vec{k}_{\varrho}\cdot\vec{\varrho}_{\mathrm{o}}-\omega t)} \left(\underbrace{-2e^{-hq_{z}^{P}}}_{eva.\ wave} + (1+\zeta(k_{\varrho}))\underbrace{e^{-hk_{\varrho}}}_{surf.\ displ.}\right)$$

where


$$A = \frac{\xi_z(\vec{0}, 0)}{q_z^p - k_\rho \zeta(k_\rho)} \xrightarrow{\text{Vertical}}$$
 field

J. Harms, Living Rev. Gen. Rel. 18, 3 (2015).

⇒ Need for detailed informations on the local seismic field

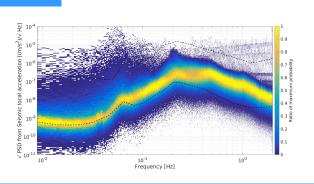

Onsite measurement

- Case study: MIGA instrument
- 2 arms of baseline L = 300 m
- Underground detector at depth h = 250 m

Canuel et al., Proc. SPIE **9900**, 990008-990008-12 (2016).

Site Map

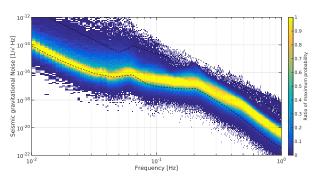
Onsite measurement


- Broad-band tri-axial seismometer

25th May 2016

- STS-2 'Low Power' captor

Seismic spectrum

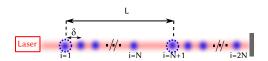


Seismic NN

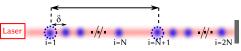
NN on a 300 m gradiometer

- Gravity acceleration perturbation on one single test mass $\delta \vec{a}(\vec{r}_{\rm o},t) = -\vec{\nabla}_{\rm o}\delta\phi$
- Noise spectral density of differential acceleration along a baseline of length L

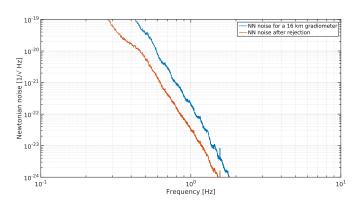
$$S(\delta \vec{a}(L\vec{e}_x) - \delta \vec{a}(\vec{o}); \omega)$$


Noise averaging

Mitigation of the NN

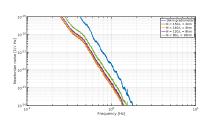

- Extracting the gravitational wave signal using averaging method
 - \Rightarrow Averaging the the NN over several realizations

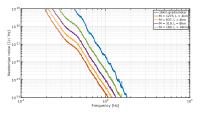
$$H_N(t) = \frac{1}{N} \sum_{i=1}^N \psi_i(t)$$


- $L_{tot} = 32 \text{ km}$; 80 gradiometers of baseline L = 16 km
- Chaibi et al., PRD 93, 021101(R) (2016).

Noise averaging

1 single gradiometer vs averaging over 80 gradiometers


⇒ 1 order of magnitude rejected by averaging


mproving the rejection?

Changing the baseline

- 1. With the same sampling rate for the gravimeters along the arm
- Changing the sampling rate ⇒ increasing the number of gravimeters
- 3. Baseline initially optimized for atmospheric noise rejection

Modifying the baseline *L*

Conclusions and Perspectives

Mitigation of Seismic Noise

- Real on-site datas
- Characterization of the seismic noise
- Statistical averaging
- Better rejection by increasing the sampling

Future work

- Mitigation with different sampling of the gravimeters
- Taking into account higher-order correlations
- Study of the atmospheric noise

Thank you for your attention!