

Summary of Thermal Noise and Coatings Workshop

Riccardo Bassiri, Gianpietro Cagnoli, Eric Gustafson, Iain Martin On behalf of workshop participants

Outline

- Introduction
- Highlights
 - Amorphous coatings
 - Ideal glasses
 - Structure characterization and modeling
 - Higher refractive index coatings
 - Crystalline coatings
- What's possible
 - Now, 1-3 and 3-5+ years time
- What's next
 - Science and Engineering
 - Organization

Introduction

Reducing coating thermal noise is key challenge for future detectors:

- Number to beat:
 - Mechanical loss Ti:Ta₂O₅ = 2×10^{-4}
- Plausible goals:
 - A+ LIGO: room temperature < 1x10-4 2X better
 - LIGO Voyager (cryogenic): 120 K < 2x10-5 10X better
- Need to maintain optical properties over 34 cm + diameter:
 - at 1.06 m for A+-LIGO
 - at ~1.5 2 um for cryo LIGO Voyager
 - optical absorption ~0.5 ppm
 - micro-roughness scatter ~1 ppm

G1601218

Ideal glass: lowest energy state with minimal Two Level Systems (TLS)

Highlights: a-Si

Highlights: Increase refractive index

Increase refractive index, reduce the number of HR stacks

	TiO2Ta2O5	new high-index layer
Ф ~2.5 kHz	(3.20 ± 0.04) ⋅ 10 ⁻⁴	(3.41 ± 0.13) ⋅ 10 ⁻⁴
Ф _{~14 kHz}	3.9 · 10 ⁻⁴	(3.8 ± 0.5) ⋅ 10 ⁻⁴
N 1064 nm	2.050 ± 0.005	2.095
simila highe	ar loss r index see M. Granat	6% thinner ETM stack [-1 doublet] lower stack loss expected

Highlights: Structure and modeling

free-standing epitaxial AlGaAs reflectivity >0.9999 (ppm losses) loss angle $< 2 \times 10^{-5}$ to $< 5 \times 10^{-6}$

see G. Cole talk

Crystalline coatings are a viable option for large-area low-noise optics, though a lot of work remains to be done

- Properties must be studied against LIGO specifications
 - wavefront error of large-area coatings must be studied
 - the same samples can be used to verify optical (and potentially mechanical) performance of our coatings
- Further scaling investigations must be initiated
 - a staged approach involving increasingly larger optics should be started as soon as possible (150 or 200 mm diameter parts?)
 - GaAs substrate development will have to start soon
 - crystal growth manufacturers need ~2-3 year head-start
 - can be co-funded via semiconductor microelectronics industry

What's possible

- What we know has lower thermal noise now:
 - Change in e.g. titania doping to increase refractive index:
 - Possible some other dopant to same affect
 - LMA have coating with ~ 6% TN reduction
 - Multi-material a-Si for ETMs:
 - a-Si buried in the lower layers of the HR stack
 - @1064 ~ 20% TN reduction

What's possible

- What's possible in 1 3 years:
 - Elevated temperature deposition
 - Makes lower loss on a-Si coatings
 - Postulate lower loss in traditional oxides
 - Higher temperature annealing before crystallization reduces loss
 - Nano-layer Titania-Tantala coating
- What's possible in 3 5+ years:
 - AlGaAs
 - Currently low loss, low absorption, low scatter loss in small cavity
 - Need to scale to large area study absorption, scatter, uniformity, figure error
 - AlGaP proven low loss other parameters need further study

Zr:Ta2O5 (does not crystallize at 700C – loss under investigation), other dopants/oxides?

GWADW 2016 - Elba

What's next - Science/ Engineering

- Key deposition parameters to study:
 - Elevated temperature
 - Low deposition rate
 - Ion assist
- aSi absorption:
 - Reduction of dangling bonds
 - Hydrogen dope samples known to reduce absorption
- Higher index and annealing temperature:
 - Add Ti for higher index
 - Absorption measurements needed for higher Ti concentrations

GWADW 2016 - Elba

What's next - Science/ Engineering

- Structure characterization:
 - Theory vs. Experiment
 - Closer interaction going forward
 - Theory of deposition
- Comparison of Loss techniques:
 - Cantilevers vs. discs
 - Standard sample set for all measurements
- Scatter loss:
 - Specifications for scatter?
 - Standard technique?

see M. Lorenzini talk

GWADW 2016 - Elba

What's next - Science/ Engineering

- After the solution is found:
 - Requires 2-3 years of engineering development for amorphous coatings
- Other coating development considerations:
 - Anti reflective coatings with R < 20 ppm
 - Coatings with reduced point defects
 - Enhanced Faraday isolators
 - Conductive coatings
 - 50/50 beam splitters
 - Enhanced coating thickness uniformity

GWADW 2016 - Elba

What's next - Organizational

- Strengthen international collaboration
- Interaction with NSF:
 - Plan for near term research proposal
 - Draft prepared in advance of July DAWN meeting

GWADW 2016 - Elba

Summary of Thermal Noise and Coatings Workshop

We're making great progress!

Riccardo Bassiri, Gianpietro Cagnoli, Eric Gustafson, Iain Martin On behalf of workshop participants

All talks available GWADW website: tinyurl.com/GWADW16

