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Black hole masses and spins
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Forming massive black holes

Weak wind
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A possible
evolution
scenario
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Predicted mass distributions
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Differentiating models: After O1
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Table 1
Summary of Population Synthesis Models

Model

Physical Difference

Standard

Variation 1
Variation 2
Variation 3
Variation 4
Variation 5
Variation 6
Variation 7
Variation 8
Variation 9
Variation 10
Variation 11

GWADW Elba, May 23, 2016

Maximum neutron star mass = 2.5 M, rapid supernova
engine (Fryer et al. 2012), physically motivated envelope
binding energy (Xu & Li 2010), standard kicks
o =265kms™!

Very high, fixed envelope binding energy”

High, fixed envelope binding energy®

Low, fixed envelope binding energy”

Very low, fixed envelope binding energy”

Maximum neutron star mass = 3.0 M,

Maximum neutron mass = 2.0 M,

Reduced kicks o = 123.5 km s~!

High black hole kicks, f,, = 0

No black hole kicks, f, = 1

Delayed supernova engine (Fryer et al. 2012)

Reduced stellar winds by factor of 2

From Stevenson et al 2015
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Differentiating models: After O2
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Table 1
Summary of Population Synthesis Models

Model

Physical Difference

Standard

Variation 1
Variation 2
Variation 3
Variation 4
Variation 5
Variation 6
Variation 7
Variation 8
Variation 9
Variation 10
Variation 11

Model

GWADW Elba, May 23, 2016

Maximum neutron star mass = 2.5 M, rapid supernova
engine (Fryer et al. 2012), physically motivated envelope
binding energy (Xu & Li 2010), standard kicks
o =265kms™!

Very high, fixed envelope binding energy”

High, fixed envelope binding energy®

Low, fixed envelope binding energy”

Very low, fixed envelope binding energy”

Maximum neutron star mass = 3.0 M,

Maximum neutron mass = 2.0 M,

Reduced kicks o = 123.5 km s~!

High black hole kicks, f,, = 0

No black hole kicks, f, = 1

Delayed supernova engine (Fryer et al. 2012)

Reduced stellar winds by factor of 2

From Stevenson et al 2015
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Dynamical formation
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The Message - |

e Future observations will reveal the mass and
spin distribution of black holes in binaries

* Provides a new way to probe formation and
evolution of massive stars in binary systems
— Common envelope

— Stellar winds
— Supernovae and black hole kicks

* Or, the models may not fit the observations
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Review of GW150914’s parameters:
MASSES

Masses of confirmed black holes
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Review of GW150914’s parameters:
SPINS

—— Prior cS,/(Gmj)
e |MRPhenom off
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Review of GW150914’s parameters:
DISTANCE
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Moving forward

e Were the uncertainties in the estimates of
GW150914’s parameters “typical”?

* Simulated populations of heavy BBH, uniform
in commoving volume, and estimated
parameters with HLV (design) and HLVIJ.
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Distribution of redshifts

0 e Light BBH (<15Mtot) will
Q 1 HLVD probe the nearby universe
7 ] HLV  Heavy (<100Mtot) from z~1
6 , — Higher as more
5 [ 1 lightHLV interferometers are added
4
3 e Detectable sources lie in the
2 range z < 2
1 — Need even more than 5 IFOs
0 to explore large cosmological
0. . 1.0 distances

Injected 2 — ...or 3G instruments
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Mass estimates
SOURCE FRAME DETECTOR FRAME
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Spin estimates

e Distribution of 90% confidence
interval for estimation of spin
L HLVII magnitude shows

[ HLV — Very large uncertainties for most
[ lightHLV events

— Occasionally, small uncertainties
for events with large spins and
favorable orientations

* The situation might be better for
lower masses due to more cycles
in band

== —— — Not immediate from this plot,
02 03 04 05 since for the light BBH | had used
90% CL a1 SpinTaylorT4, which might have

led to slightly smaller errors
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Formation channels

* The two most likely formation patterns for BBH (and CBCs in
general) are:

— Common envelope: the two objects were in a binary system from the
very beginning.

— Dynamical capture: the two objects were born independently, then
met and formed a bound system.

e Astrophysically interesting to understand which one happens more
often

e Each channel results in a quite different expected spin distribution,
in particular spin orientation:

— Common envelope systems are expected to have spins along the
orbital angular momentum

— Dynamical capture systems should have randomly oriented spins
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Formation channels

* Formed catalog of 200 heavy
BBH for which a given 0.025
fraction has spins aligned

Posterior distribution for mixture parameter

with the orbit (i.e. came from 0.020
common envelope) 0015
 We will be able to calculate 0.010
the fraction with good 0.005
accuracy. '
0.000
OHQAD
e 200 heavy BBH could be ARV

detected in as little as 1-2
years of operation of 2G IFOs.
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The Message - I

e Future observations will reveal the mass and
spin distribution of black holes in binaries

* Uncertainties of GW150914 are typical for
sources in the same mass range
— Spin is poorly constrained

— For a fixed SNR, mass and spin uncertainties will
not improve as more detectors are added
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Some questions for the near term
(next few years, no major upgrades)

* Can we optimize advanced detectors
sensitivity to see more black holes?

 What about high frequency sensitivity?

Advanced LIGO Advanced Virgo

Early (()1 16, 4080 \1; : Jarly (2016-17, 2060 Mpc)
: id ( 18, 6085 Mpc)
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O1 aLlGO Sensitivity

H1 sensitivity during O1 H1 noise budget (credit: Evan Hall)
aLIGO H1 freerunning DARM, 2015-12-02 5:30:00 Z
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GW150914: The Advanced LIGO Detectors in the Era of First Discoveries
http://journals.aps.org/prl/abstract/10.1103/PhysRevlett.116.131103

Frequency [Hz]

» A factor of ~2 excess of noise at low frequency
* Obviously understanding and fixing this excess of noise is
the 15t thing in the to-do-list
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Shaping quantum noise

* (Power)

* Signal Recycling Mirror transmission

* Sighal Recycling Cavity tuning

e Squeezing (here optimal frequency dependent)

Note: aLIGO curve used for this analysis
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Configuration optimization comparison
(by Jamie Rollins)

Bl aLIGO
[ opt SRC Tuning
[ opt SRM Transmission

Inspiral Range with
Cosmology
by John Miller
LIGO-T1500491
(in gwinc svn)
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Example curves @ full power:
Optimized (Tuning/SRM T) vs Squeezing
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What this optlmlzatlc)n tells us

s with different SRM

10 - .

P Fritschel, LIGO 616007(35

e Current SRM transmission is
already optimized for BBH
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* Signal Recycling Cavity tuning
helps over design curve
(especially at low power) esuency (v L. Barsotti
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Arm loss: 3.75e-05
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llluminating Plot (by Jan Harms)
to understand quantum noise
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Loss (%)

10 dB of high frequency squeezing
doesn’t seem impossible anymore

Dwyer et al. Optics Express (2013)
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Phase noise of the squeezing source became
negligible: ~¥1.5 mrad of phase noise

E. Oelker et al. (LIGO-P1600074, accepted in
Optica)

Measured QE of photodetector ~0.5%
H. Vahlbruch et al. LIGO-P1600153

Efforts on going to understand and reduce
mode matching loss (Lisa’s talk on Wed)

‘ ‘ ‘ | Faraday loss (single pass)
10 15 20 25 30
Milliradians quadrature fluctuations e aLIGO: ~3% (KOJI Arai — it was 4%)

Phase Noise (mrad) * GEO: 2%
* Florida design, target <0.5% G1600068
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Quantum noise @ low frequency

* Determined by filter cavity loss/length; mode matching to the filter cavity
also important =» see Eleonora’s talk on Wed

* Bottom line: quantum noise reduction with squeezing could look
something like this:

LIGO-P1600121

= aLIGO quantum noise

== Frequency-independent squeezing (10dB)

=4~ Single input filter (Oppm); 10dB squeezing
Single input filter (16m, 16ppm); 10dB squeezing
Single input filter (100m, 40ppm); 10dB squeezing
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The Message - llI

* |t seems that the ~2020 aLIGO curve will have
frequency dependent squeezing, no SRC tuning,
most likely same high(ish) SRM transmission

* Up to a factor of 2-3 improvement at high
frequency is doable (6-10 dB squeezing), as long
as we continue to work on reducing loss

* Low frequency quantum noise reduction -- more
on Eleonora’s talk on Wed =2 goal is 6-10 dB
BROADBAND quantum enhancement
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Impact on parameter estimation:
squeezing w/o filter cavity

* InLynch+ 2014 we considered the
impact of squeezing on parameter | == ALIGO Baseline
estimation for binary neutron star . | i AVirgo Baseline
and stellar mass black holes | nn ALIGO Squeezed

* For the BSN, the extra SNR at high
frequency is nearly exactly
compensated for by the loss at low
frequency
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— Better estimation of sky position
and tidal parameters (Equation
of state)

* For higher mass systems, loss of SNR
and fewer detections

* Squeezing with filter cavity harmful if
heavy BBH will be the primary
science target

Frequency [Hz]
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Impact on parameter estimation:
squeezing with filter cavity

* As we said, it improves |

performances at all ' ik |- AUGO Baseline
. . v _ == ALIGO Lossy
frequencies = increase - ALIGO Lossless

number of detections

Hz]
—
<

 What happens to the
average event, depends on
sensitivity of the network
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Merger Physics: GW150914

* Ringdown fit

with an ~
exponential %
decay E
* SNR of 7 from §
o
3ms after =
merger 5
* No identification \
of other modes : 0 w0 a0

QNM frequency (Hz)
From Abbott et al, PRL, 2016
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Observing higher modes and
overtones

350 Msun binary @ 100 Mpc; From London et al 2014.

—FET-B —ET-B
o AdvLIGO

o AdvLIGO
(2.2,0)
(2.2)1)

——(3,2,0)

0 = 0, Maya

---QNM Sum
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Observing higher modes and
overtones

Arrows indicate

—ET-B
AdvLIGO
—-(2,2,0)
(2.2)1)
< (320)
0 = 0, Maya]
---QNM Sum |

peaks for 60 Msun @ 400 Mpc

—ET-B__
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Merger Physics: BNS & NSBH

NS structure can
effect BNS and
NSBH waveforms

High rate of BBH
does not imply
high rate of BNS/
NSBH

Effects are
typically SNR™~1
at 100 Mpc

NSBH where NS is or

BNS post-merger oscillations, from Stergiolas, 2011

GWADW Elba, May 23, 2016 GW1501914: Effects on Near Term Plans 35



The Message - |V

* Improved high frequency can give insights into
merger physics:
— BBH: multiple ringdown modes
— NSBH: tidal disruption
— BNS: post-merger oscillations

* Likely only for the closest/loudest of systems.
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Networks & Localization

e Usual motivation is
for EM follow-up

* May not be relevant
for BBH
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Networks & Localization

Overall

* Uncertainty in | —— IMRPhenor
distance affects y
mass estimates
through redshift

e About a 3% effect
for GW150914
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Mass estimates

* Fractional mass
uncertainty scales
with absolute
redshift
uncertainty: SM/
M ~ bz

* Likely to be
dominant error on
chirp mass for
lighter systems
seen by only aLIGO
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Importance of a network

* Localizations go
from hundreds to
tens of square
degrees

 Distance:

— Localization: fixes
detector response

— 2 polarizations:
restrict orientation

>
A=
B

o
o)

2
A

60 80
Percentage Error in Luminosity Distance (100 ADL/DL)

GWADW Elba, May 23, 2016
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The Message -V

 Localization matters for black hole binaries

 Network detection gives significant
improvement in position and distance
measurements

* Likely to be limiting factor in mass estimate
for BBH.

GWADW Elba, May 23, 2016 GW1501914: Effects on Near Term Plans

41



The final message:
what can/can not do with a 2G network

Sky Spin Mass Distances | Cosmology | Merger
Localization | Estimation | Estimation Physics

Light BBH

Heavy BBH
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